ID.nl logo
Google+: Hoe gebruik je het, en waarom?
© PXimport
Huis

Google+: Hoe gebruik je het, en waarom?

Ik ben nog nooit iemand tegengekomen die alleen Google+ gebruikt, niemand verlaat Facebook namelijk voor Google+. Toch hebben veel mensen een Google+-account, vooral omdat het netwerk zo nauw verbonden is met Gmail, Google Drive en Maps. Maar wat kan je er nou eigenlijk mee?

Het is niet ongebruikelijk om je aan te melden bij Google+, een biografie in te vullen, misschien een foto toe te voegen, en het vervolgens meteen te vergeten. In haar streven om een supermacht sociaal netwerk te worden, heeft Google+ een heleboel instellingen, tools en bronnen ingebakken, maar dergelijke pogingen maken het nogal overweldigend. Facebook, Twitter, Instagram, Vine - dit zijn allemaal eenvoudige sociale netwerken. Google+ is een stuk ingewikkelder, te beginnen met: Wie moet je toevoegen aan je kringen? Wacht even - wat is een kring? Laten we terug naar de basis gaan.

Google+ voor dummies

De meesten onder ons hebben niet echt een ander sociaal netwerk nodig, maar gezien het feit dat we dagelijks met Google bezig zijn heeft de natuurlijke nieuwsgierigheid de groei van Google+ aangewakkerd. Er zijn mensen die het netwerk gebruiken om hogerop te komen in Google's zoekresultaten in een poging tot zelfpromotie. Er zijn bedrijven die de privé gemeenschappen van het netwerk gebruiken om bedrijfszaken te bespreken. En dan heb je nog de reguliere mensen (jij en ik) die gewoon willen weten waar Google+ goed voor is.

Net als ieder ander sociaal netwerk is Google+ nutteloos tenzij je een profiel opbouwt zodat mensen bevriend met je willen zijn, en het helpt als een aantal van je vrienden al lid zijn. Profiel, vrienden - deze dingen zijn belangrijk. Google+ doorzoekt behulpzaam je e-mail contactpersonen en geeft aanbevelingen om mensen toe te voegen met wie je samengewerkt hebt of naar school geweest bent, of je kunt op naam zoeken. Doe het allebei.

En hier komen de cirkels bij kijken. Net als op Facebook kun je met Google+ het publiek dat de posts die je plaatst te zien krijgt beperken. Van sommige dingen wil je dat iedereen ze te zien krijgt, terwijl andere dingen voor slechts een bepaalde groep mensen bedoeld is. Je kunt dezelfde mensen aan verschillende kringen toevoegen - sommige zijn zowel vrienden als collega's, bijvoorbeeld - en je kunt het publiek per post veranderen.

©PXimport

Google+ heeft heel veel opties als je het eenmaal onder de knie hebt. Je kunt gemeenschappen beginnen of er lid van worden, oninteressante posts dempen, en verhalen die op het internet staan delen. Het brede bereik van Google betekent dat Google+ met Maps en Gmail kan werken - wanneer je naar nabijgelegen restaurants op zoek bent laat Google+ je horecagelegenheden zien die je vrienden bezocht hebben of op het netwerk beoordeeld hebben. Je kunt ook direct content van Gmail naar je G+ pagina delen. Het zit hem in de kleine dingen.

Google+ biedt bijna teveel mogelijkheden, en ze zijn niet altijd voor de hand liggend. Zo kun je wanneer je een post aan het schrijven bent op een klein pijltje klikken waarmee je commentaren en shares kunt uitschakelen. Dat kan met Facebook niet. Je hebt ook toegang tot de Chrome extensies voor Google+, waarmee je van alles kunt doen, van +1 (het equivalent van de Facebook 'like') voor internetpagina's naar keuze tot het inplannen van toekomstige posts.

Maar wat moet je posten? Als je al Facebook en Twitter gebruikt, kan het lastig zijn om iets te bedenken dat interessant is om met je Google+ volgelingen te delen wat ze nog niet eerder gezien hebben. Als je je Google+ account actief wilt houden maar geen verschillende content kunt bedenken om op al je netwerken te posten, dan kun je eenvoudig hetzelfde artikel of je mijmeringen op verschillende sites posten met behulp van diensten zoals Buffer of de eerder genoemde Chrome extensie.

©PXimport

Fotofuncties die de moeite waard zijn

Google+ is niet moeilijk om te gebruiken, maar als je er goed naar kijkt realiseer je je dat het sociale netwerk niet veel van andere diensten verschilt. Waar Google+ echt in uitblinkt ten opzichte van de concurrentie is het delen van foto's.

Het afgelopen jaar heeft het netwerk zich vooral gericht op fotografie, en deze strategie werpt duidelijk zijn vruchten af. Vanaf oktober worden er wekelijks 1.5 miljard foto's naar Google+ geüpload.

Het uploaden van je foto's naar het netwerk is het eenvoudigst met Chrome, waarmee je je foto's gemakkelijk naar het netwerk kun slepen. Met de Google+ iOS en Android apps kun je een automatische back-up instelling voor je afbeeldingen instellen, zodat elke foto die je met je telefoon maakt naar een privé map op G+ geüpload wordt.

Zodra je foto's zich op Google bevinden kun je ze bewerken met Google's Lightbox. De fotobewerkingstools zijn alleen beschikbaar voor desktopgebruikers - Google+ loopt op dit gebied achter, want Instagram heeft laten zien dat mensen de mogelijkheid willen hebben om een filter op hun foto's toe te passen wanneer ze met hun telefoon in de weer zijn. Je kunt de G+ automatische verbeteringsfunctie inschakelen in de apps voor een subtiele maar best goede bewerking door Google zelf, en je kunt foto's ook wat bijsnijden. Voor intensiever werk, waaronder het aanpassen van het niveau van de automatische verbeteringsfunctie, zul je Chrome moeten openen.

Uitgebreide mogelijkheden

De desktop gebaseerde bewerkingstools zijn degelijk en veel uitgebreider dan die van enig ander sociaal netwerk. Ze gaan van rudimentair bijsnijden en roteren tot ouderwetse filters, omlijstingen, verscherpen, middelste scherpstelpunt, en een coole schuine stand verschuivingsoptie. Je kunt vierkante afbeeldingen maken, of foto's eruit laten zien alsof ze recht uit een verbleekte filmstrook uit de jaren '60 komen.

©PXimport

Als je meerdere foto's uploadt die duidelijk frames van dezelfde actie zijn, kan de Auto Awesome functie van het netwerk hiervan een samengestelde afbeelding, GIF, HDR-afbeelding, of een mix maken waardoor iedereen er op zijn best uitziet. Afgelopen donderdag lanceerde Google+ voor de feestdagen een update voor Auto Awesome waarmee je foto's van vallende sneeuw kunt omtoveren in GIFs van vallende sneeuw. Hetzelfde geldt voor twinkelende lichtjes. Het beste is dat je een deel van je werk met iedereen kunt delen terwijl je je privé familiefoto's alleen aan je beste vrienden laat zien.

Dat is het probleem met Google+. Mensen raken zo overweldigd door de grote hoeveelheid opties en vakjes die je aan moet vinken op elke pagina dat ze het opgeven. Maar als je Facebook beu bent en een nieuwe plek wilt om je foto's te delen die meer tools en privacy-instellingen heeft dan Instagram, dan is Google+ een goede keuze. Je hoeft niet alle instellingen tegelijk te gebruiken. Je kunt het gewoon uitproberen door je beste smartphone foto's automatisch te uploaden en Google+ je foto's te laten uitkiezen en oppoetsen.

Dit is een vrij vertaald artikel van onze Amerikaanse zustersite TechHive.com, geschreven door Caitlin McGarry (@Caitlin_McGarry). Het artikel wordt door Computer!Totaal gepubliceerd om je zo snel mogelijk van handige How To's, slimme tips en praktische oplossingen te voorzien. Beschreven termen, handelingen en instellingen kunnen regio gebonden zijn.

▼ Volgende artikel
Dit is de ideale temperatuur voor jouw koelkast en vriezer
© yaroslav1986
Huis

Dit is de ideale temperatuur voor jouw koelkast en vriezer

De temperatuur van je koelkast is belangrijker dan je misschien denkt. Als je 'm goed instelt, blijft je eten niet alleen langer vers, maar voorkom je ook verspilling én nare luchtjes.

Na het lezen van dit artikel weet je:

  • Welke temperatuur het beste is voor de koelkast en vriezer
  • Hoe je de temperatuur nauwekeurig meten in je koelkast of vriezer
  • Hoe je de koelkast of vriezer het beste kunt indelen
  • Hoe je warmteverlies voorkomt
  • Hoe je energie kunst besparen met je koelkast of vriezer

Ook interessant: Is het tijd voor een nieuwe koelkast?

Wat is de beste temperatuur voor je koelkast?

De gouden standaard? 4 graden Celsius. Daarmee zit je voor de meeste etenswaren helemaal goed. Mocht jouw koelkast hoger of lager staan, dan weet je dus wat je te doen staat. Maar let op: die 4 graden geldt niet overal in je koelkast. Onderin is het meestal wat koeler, omdat koude lucht naar beneden zakt. In de deurvakken – waar je telkens warme lucht binnenlaat als je de deur opentrekt – is het juist wat warmer. Zeker als je koelkast goed vol zit, kunnen de verschillen flink oplopen.

Wil je het zeker weten? Plaats dan op verschillende plekken een simpele koelkastthermometer en check of alles binnen de perken blijft. Zit er meer dan 3 graden verschil tussen boven en onder, of tussen het midden en de deur? Dan is het tijd om de boel wat slimmer in te richten.

Wist je dat sommige voedingsmiddelen gevoeliger voor temperatuurschommelingen zijn? Vlees, vis, zuivel en eieren moeten strikt op 4 °C worden bewaard. Groenten en fruit kunnen daarentegen ook bij lagere temperaturen goed gedijen in de groentelade.

Tips voor de juiste koelkasttemperatuur:
Gebruik een koelkastthermometer om de temperatuur goed in de gaten te houden.
Zet gevoelig voedsel, zoals vlees, op de middelste planken.
Bewaar producten die tegen een lagere temperatuur kunnen, zoals groenten, onderin.

©Olga Yastremska and Leonid Yastremskiy

Wat is de juiste vriezertemperatuur?

Voor je vriezer geldt één ijskoude regel: -18 graden Celsius is de sweet spot. Op die temperatuur liggen bacteriën en schimmels stil als een standbeeld, en blijft je eten dus veilig bewaard – soms wel maandenlang. Veel vriezers kunnen nóg kouder, maar dat heeft weinig zin. Het kost alleen extra stroom en levert geen voordelen op.

Check ook eens het sterrensysteem op je vriezer: hoe meer sterren, hoe beter hij in staat is om je eten langdurig in topconditie te houden. En twijfel je of jouw diepvries koud genoeg is? Met een vriezerthermometer weet je het zo. Want hoe warmer het wordt, hoe sneller je eten achteruitgaat, en dat is zonde van je boodschappen én je energie.

Tips voor de optimale vriezertemperatuur:
Gebruik een vriezerthermometer om de temperatuur in de gaten te houden.
Stel je vriezer niet kouder in dan nodig. Elke graad lager kost 5% meer energie.
Plaats nieuwe producten zoveel mogelijk rondom al ingevroren voedsel.
Laat warme gerechten eerst afkoelen voordat je ze invriest.
Zet je vriezer niet in de volle zon of naast een warmtebron zoals de oven.
Ontdooi je vriezer regelmatig.

©Hedgehog94

Hoe stel je de temperatuur in?

Hoe je de temperatuur precies instelt, hangt af van het soort koelkast of vriezer dat je hebt. Heb je een klassiek model met een draaiknop? Dan doe je het een beetje op gevoel. Voor je koelkast zit je meestal goed op stand 3 of 4, voor de vriezer op stand 5. Een losse thermometer is dan geen overbodige luxe om te controleren of je echt rond de 4 °C (koelkast) en -18 °C (vriezer) zit.

Nieuwere apparaten maken het je makkelijker: met een digitaal display stel je de temperatuur tot op de graad nauwkeurig in. En met een slimme koelkast kun je zelfs vanaf je vakantieadres even de boel bijstellen via een app. Ideaal als je vergeten bent dat restje stoofpot erin te zetten voordat je wegging.

Een paar praktische tips: zet je koelkast niet pal naast het fornuis of een radiator – dat maakt 'm onnodig lui. Laat warme gerechten eerst even afkoelen voordat je ze in de koelkast zet, anders raakt de temperatuur van de hele inhoud uit balans. En check af en toe of de deur nog goed sluit. Versleten rubbers laten koude lucht ontsnappen en dan is je energiezuinige instelling voor niks geweest.

Ook interessant: Koelkastproblemen? Zo los je ze op!

©WEBSERVIS

Slim koelen, minder stroom verbruiken

Je koelkast en vriezer staan dag en nacht aan, dus alle kleine beetjes energiebesparing tellen. Begin bij de basis: kies bij de aanschaf voor een energiezuinig model, bij voorkeur eentje met label A. Die zijn flink zuiniger dan oudere of minder efficiënte modellen, en dat merk je uiteindelijk op je energierekening.

Ook de details maken verschil. Controleer minstens één keer per jaar de deurrubbers. Sluiten die niet meer goed aan? Dan ontsnapt er koude lucht en moet je apparaat overuren draaien om alles koel te houden. Houd de deuren sowieso zo veel mogelijk dicht; hoe korter je 'm opent, hoe minder warmte erin komt.

Nog een gouden tip: laat je koelkast en vriezer ademen. Zorg voor genoeg ruimte rondom, vooral aan de achterkant, zodat de warmte netjes kan worden afgevoerd. Zit de boel vol stof? Maak dan even de condensor schoon. En vergeet je vriezer niet af en toe te ontdooien. IJs op de wanden klinkt koud, maar werkt juist als een isolerend jasje, en dat kost extra stroom.

▼ Volgende artikel
Van neuraal netwerk tot deep learning: experimenteren met AI
© svitlini - stock.adobe.com
Huis

Van neuraal netwerk tot deep learning: experimenteren met AI

Dagelijks hoor en lees je over artificiële intelligentie (AI). Daarbij worden vaak termen als neuraal netwerk en deep learning gebruikt. In dit artikel vertellen je hier meer over en gaan we ook zelf met AI aan de slag. We doen dit via TensorFlow Playground en Google Teachable Machine.

In dit artikel laten we zien hoe je zelf kunt experimenteren met kunstmatige intelligentie:

  • Bouw met TensorFlow Playground een neuraal netwerk
  • Maak je eigen beeldherkenningsmodel met Google Teachable Machine
  • Train de AI met foto's van jezelf via je webcam
  • Pas de AI toe in een educatieve setting, zonder programmeerkennis

Ook bijzonder interessant: Makkelijk switchen tussen AI-taalmodellen? Maak kennis met Jan

Het begrip artificiële intelligentie verwijst naar de mogelijkheid om zelfstandig kennis op te nemen, problemen op te lossen en beslissingen te nemen, net zoals een mens. Het woord ‘artificieel’ duidt erop dat deze vorm van intelligentie door mensen is ontworpen en door computers of machines wordt uitgevoerd en dus niet door een biologisch brein.

Veel AI-toepassingen, zoals beeld- en spraakherkenning en taalverwerking, maken hierbij gebruik van zogenoemde neurale netwerken. Deze zijn namelijk uitstekend geschikt voor het herkennen van complexe patronen in grote hoeveelheden ongestructureerde data.

Zo’n digitaal neuraal netwerk (DNN) is gebaseerd op de werking en structuur van het menselijke brein, maar het blijft niet meer dan een abstracte vereenvoudiging. Het menselijke brein is tenslotte (vooralsnog) aanzienlijk complexer, flexibeler en vooral ook energiezuiniger met een maximaal verbruik van circa 20 watt. Ons brein is bovendien superieur in creativiteit, contextueel begrip en emotionele verwerking. 

Biologisch neuraal netwerk

De menselijke hersenen zijn opgebouwd uit een biologisch neuraal netwerk. Dat bestaat uit tientallen miljarden neuronen of zenuwcellen. Deze sturen signalen naar elkaar door via minuscule ruimtes tussen de neuronen, synapsen genoemd. Binnen een neuron (tussen het cellichaam en het uiteinde van de zenuwvezel) gebeurt dit elektrisch. Bij de overgang naar een ander neuron verloopt dit chemisch. Er worden signaalstoffen (neurotransmitters, zoals glutamaat, dopamine en serotonine) vrijgegeven. Deze binden zich aan receptoren van het ontvangende neuron.

Laten we dit verduidelijken. Wanneer je een dier ziet, sturen je ogen het beeld via het neurale netwerk naar je hersenen, door talrijke lagen van neuronen. Elke laag zoekt naar specifieke kenmerken, zoals oren, lichaamsgrootte en vacht. Door eerdere ervaringen zijn sommige neuronen getraind om bijvoorbeeld katten te herkennen, andere honden. Herkent het netwerk meer kenmerken van een kat, dan worden de bijbehorende neuronen sterker geactiveerd. Worden in de uitvoerlaag meer ‘kat-neuronen’ dan ‘hond-neuronen’ actief, dan beslissen je hersenen dat het om een kat gaat. Vergis je je, dan onthouden je hersenen dit en passen de verbindingen tussen neuronen zich aan (neuroplasticiteit): je leert.

Neurotransmitters zetten het signaal via de synaps over naar het ontvangende neuron.

Digitaal neuraal netwerk

Een digitaal neuraal netwerk (DNN) werkt net als het biologisch brein met neuronen (zie bovenstaand tekstkader). Alleen in een DNN gaat het hierbij om wiskundige rekeneenheden die informatie verwerken. Elk neuron ontvangt invoer, vermenigvuldigt deze met een gewicht om de relevantie te bepalen en telt daar een compensatiewaarde, de zogeheten bias, bij op. Samen vormen deze gewichten en biases de ‘parameters’. GPT-4 bevat er naar schatting 1,7 biljoen.

De informatie stroomt door een of meer verborgen lagen tussen de invoer- en uitvoerlaag. Elke verborgen laag verwerkt de gegevens verder, waardoor complexere patronen worden herkend. Hiervoor gebruikt elk neuron een zogeheten activatiefunctie, die bepaalt of en in welke mate de uitvoer wordt doorgegeven. Zonder activatiefuncties zou het netwerk alleen eenvoudige wiskundige verbanden leren, zoals rechte lijnen, terwijl het nu ook met complexe, gebogen of gelaagde patronen overweg kan.

Een eenvoudig digitaal neuraal netwerk, met één verborgen laag.

Sturing en zelflering

Mensen sturen het DNN indirect aan door het bepalen van het aantal lagen, het aantal neuronen per laag en het type activatiefunctie. Verder kiezen ze hoe het netwerk moet leren, bijvoorbeeld door te bepalen hoeveel data het ziet en hoe complex de gegevens zijn, hoe vaak het leert en hoe groot de aanpassingen mogen zijn. Tijdens deze training worden de parameters automatisch aangepast door het netwerk om optimaal patronen te herkennen en voorspellingen te doen.

Vereenvoudigd komt het hierop neer: nadat het netwerk een voorspelling heeft gedaan, wordt berekend hoe ver deze afwijkt van de juiste waarde, waartoe het netwerk tijdens de training toegang heeft. Deze afwijking wordt vervolgens teruggestuurd door het netwerk, van de uitvoer- naar de invoerlaag. Onderweg berekent het netwerk hoeveel elke verbinding (gewicht) en extra waarde (bias) heeft bijgedragen aan de fout. Daarop past het netwerk de parameters aan om de fout kleiner te maken. Dit proces herhaalt zich vele malen, zodat het netwerk steeds accurater wordt. Dit principe wordt ‘backpropagation’ genoemd (letterlijk: achterwaartse terugkoppeling) en maakt dat het netwerk grotendeels zelflerend is.

©Vallabh soni - stock.adobe.com

Backpropagation: het netwerk stuurt zelf bij op basis van de vastgestelde afwijking.

TensorFlow Playground

Spelen met werking DNN

Het wordt interessanter wanneer je zelf experimenteert met de principes en werking van een DNN. Ga naar https://playground.tensorflow.org. Hier herken je de lagen met neuronen: een invoerlaag, twee verborgen lagen en een uitvoerlaag. Bij DATA is al een specifieke dataset geselecteerd. Zodra je op Run (het pijltje) klikt, probeert het netwerk het patroon in de gekozen dataset te herkennen. Het resultaat verschijnt onder Output.

Hoe langer je het proces laat lopen, hoe hoger het aantal trainingscycli (hier epochs genoemd) en hoe accurater de ruimte-indeling of dataclassificatie in de output: blauwe achtergrond voor blauwe punten en oranje achtergrond voor oranje punten. Omdat het standaard om een eenvoudig datapatroon gaat, zal de Training loss waarschijnlijk 0.000 zijn. Dit betekent dat het netwerk het patroon vrijwel meteen correct herkent op basis van de ingestelde parameters, zodat er nauwelijks of geen backpropagation nodig is.

Met de standaardinstellingen kan dit neurale netwerk moeiteloos overweg.

Verdere aansturing

Je kunt het netwerk flink uitdagen door enkele instellingen aan te passen. We geven je enkele mogelijkheden die zeker leerzaam kunnen zijn. Activeer in de invoerlaag bijvoorbeeld alleen de bovenste eigenschap X1. Het netwerk classificeert dan uitsluitend op basis van de horizontale posities van de punten. Voor de derde dataset (linksonder) kan dit voldoende zijn, maar voor andere niet. Probeer het gerust zelf uit. Je zult ook merken dat hoe meer features je inschakelt, hoe meer informatie het netwerk gebruikt en hoe beter het complexe patronen kan herkennen.

Verhoog eens Noise (ruis) met de schuifknop om het leerproces te bemoeilijken. De datapunten worden hierdoor minder gestructureerd, wat je meteen terugziet in de Output. Verminder nu eens het aantal neuronen (via de minknop boven elke laag) om het netwerk minder complexe beslissingen te laten nemen. Minder verborgen lagen verlaagt eveneens de capaciteit om diepere datapatronen te leren.

Nog steeds te makkelijk? Verlaag dan de Learning rate naar bijvoorbeeld 0.0001. Een lagere leerratio betekent tenslotte kleinere stappen bij het aanpassen van de gewichten (wat zich hier visueel vertaalt als minder snel aangepaste lijndiktes tussen de neuronen), waardoor het netwerk langzamer leert.

Experimenteer gerust verder met andere, ook meer geavanceerde instellingen om het netwerk – en jezelf – uit te dagen.

Met deze instellingen wordt de training van het neurale netwerk nagenoeg onmogelijk.

Deep learning

Een DNN is een van de meest effectieve methoden of algoritmen binnen machine learning (ML), waarbij computers leren van data zonder ze expliciet te moeten programmeren. Het is vooral geschikt voor complexe taken zoals beeldherkenning, spraakherkenning en taalverwerking.

Eenvoudige ML-modellen hebben meestal een of enkele verborgen lagen. Bij een complexere architectuur met meerdere verborgen lagen, die in staat is complexere patronen en relaties te herkennen, spreekt men van deep learning (DL). Deep learning is daarmee een subonderdeel van machine learning, al is het onderscheid niet altijd scherp te maken.

Bij DL gebruikt het neurale netwerk logischerwijze meer parameters, wat meteen ook een grotere hoeveelheid data vereist om het effectief te kunnen trainen. Meer data en parameters vereisen uiteraard ook meer rekenkracht, waarvoor vaak talrijke gpu’s (Graphics Processing Units) of gespecialiseerde processors als Googles TPU’s (Tensor Processing Units) nodig zijn.

Een Google TPU op een PCIe-kaart.

Google Teachable Machine

Experimenten met AI

Het zal je nauwelijks verbazen dat je, behalve geavanceerde kennis, frameworks als TensorFlow of PyTorch nodig hebt om een DL-model te ontwikkelen. Wil je hier desondanks toch mee experimenteren, dan biedt Googles Teachable Machine een uitstekende omgeving. Dit project heeft namelijk een interface waarmee je zonder technische expertise toch een AI-model kunt trainen.

Het platform is gebaseerd op DL-technieken en gebruikt neurale netwerken om patronen en kenmerken in diverse datasets te herkennen. Het werkt met voorgetrainde modellen, maar je kunt ook eigen gegevens toevoegen om een aangepast model te trainen. Na training kun je het model exporteren in verschillende formaten en inzetten in een web-app, mobiele app of op toestellen als Raspberry Pi, Arduino of IoT-apparaten.

Via deze GitHub-pagina vind je talrijke leuke projecten met Teachable Machine (van Bananameter tot Snake Game), evenals tutorials. Maar laten we nu vooral zelf aan de slag gaan met een bescheiden project.

Dit model heeft meteen door dat deze banaan overrijp is.

Starten met project

Surf naar https://teachablemachine.withgoogle.com. Hier leer je een computer trainen om je eigen afbeeldingen, geluiden en houdingen te herkennen. Klik op Aan de slag om een nieuw project te starten en kies uit drie modelopties: Projectafbeelding, Audioproject of Project met houdingen.

Wij nemen het eerste model als voorbeeld. Dit opent een venster waarin je kunt kiezen tussen een Model voor standaard afbeelding (kleur, 224 × 224 pixels) of een Model voor ingesloten afbeelding (grijswaarden, 96 × 96 pixels). Dit laatste, een embedded model, is geschikt voor microcontrollers. Wij kiezen hier voor het wat grotere standaardmodel.

Teachable Machine laat je uit drie grote trainingsmodellen kiezen.

Dataset en klassen aanmaken

Je komt nu terecht op een webpagina waar je eerst je dataset moet aanmaken. In dit geval bestaat deze uit afbeeldingen. Je deelt deze op in twee of meer categorieën, die je ook labelt. Teachable Machine heeft standaard twee categorieën (klassen), maar via +Een klasse toevoegen kun je eenvoudig meer klassen toevoegen.

Het aantal klassen dat je nodig hebt, hangt af van je project. Voor het onderscheiden van bijvoorbeeld QR-codes en zebrapatronen volstaan twee klassen (QR en Zebra). Wil je echter overrijpe, rijpe en rauwe bananen classificeren, dan heb je er minstens drie nodig. Zorg eerst dat het juiste aantal klassen beschikbaar is. Via de knop met drie stippen verwijder je desnoods overtollige klassen. Klik bij elke klasse op het potloodicoon en geef de categorie een zinvolle naam.

Daarna voeg je data toe aan elke klasse via de knop Uploaden of Webcam. Bij gebruik van de webcam moet je de pagina toegang geven tot de aangekoppelde camera. Door op Ingedrukt houden om op te nemen te klikken, stuur je continu snapshots naar Teachable Machine. De afbeeldingen verschijnen vervolgens in de betreffende klasse.

Vul je dataset met voldoende en gevarieerde afbeeldingen, via webcam en/of uploads.

Trainen en testen

Zodra je voldoende en gevarieerde data hebt toegevoegd, kun je het AI-model trainen. Klik op Model trainen om direct te starten of pas eerst enkele instellingen aan via het pijlknopje bij Geavanceerd. Hier kun je Tijdvakken, Batchgrootte en Leersnelheid aanpassen, vergelijkbaar met Epochs, Batch size en Learning rate in TensorFlow Playground. Klik op het vraagteken voor meer uitleg. Bij Geavanceerde opties kun je in een apart venster interessante statistieken over het trainingsproces bekijken. Na afloop verschijnt de melding Model getraind.

Klik rechts op Voorbeeld bekijken, zet Invoer op AAN en kies of je via Webcam of Bestand data wilt aanleveren. Wij kozen voor Webcam en testten met verschillende afbeeldingen van QR-codes en zebra’s. Bij Uitvoer toont Teachable Machine een percentage dat de zekerheid van de classificatie weergeeft.

Een QR-code op de rug van een zebra: daar heeft Teachable Machine niet van terug.

Export

Als alles goed werkt en je het model buiten de Teachable Machine-omgeving wilt gebruiken, klik je op Model exporteren. Kies voor Tensorflow.js, selecteer Downloaden en klik op Mijn model downloaden. Pak het gedownloade zip-bestand uit in een lege submap \my_model. Deze bevat een drietal bestanden, maar niet je trainingsdata. Dit komt doordat de neurale netwerkarchitectuur, geoptimaliseerde gewichten en modelconfiguratie kunnen volstaan voor nieuwe voorspellingen.

Ga vervolgens naar het tabblad Javascript, klik op Kopiëren en plak de code in een teksteditor, zoals Kladblok of Notepad++. Sla dit op als een html-bestand in de map net boven de submap \my_model.

Om lokaal te kunnen testen zonder browserfoutmeldingen zet je eerst een eenvoudige webserver op. Wij gebruikten de gratis Abyss Web Server (voor Windows, macOS en Linux). Plaats het html-bestand samen met de submap \my_model in de standaardmap C:\Abyss Web Server\htdocs. Dubbelklik erop om het in je browser te starten. Als het goed is, kun je nu meteen je AI-model testen. Succes.

Je kunt het model bijvoorbeeld testen via een lokale webserver.