ID.nl logo
AI: vloek of zegen?
© Jakub Jirsak
Huis

AI: vloek of zegen?

Artificiële intelligentie (AI) is een term die je dagelijks hoort en leest, en die bij veel mensen uiteenlopende, soms wonderlijke of zelfs angstaanjagende, beelden oproept. In dit artikel leggen we uit wat artificiële intelligentie is, wat het niet is en wat je er zoal mee kunt doen.

In dit artikel lees je hoe AI werkt, waar het goed in is en wat de eventuele risico’s zijn. Ook benoemen we enkele handige AI-toepassingen waar je zelf mee aan de slag kunt:

  • Chatbots
  • Beeldgeneratoren
  • Audiotoepassingen als muziekjes of liedjes maken en audiobestanden verbeteren
  • Videogeneratoren

Heel interessant: Zo ga je aan de slag met je persoonlijke chatbot

Tip 01: Logisch

In de afgelopen jaren hebben computerprogramma’s veel processen geautomatiseerd. Deze programma’s waren gebaseerd op regels (rule based), en hadden dus een logische opbouw. De mens leverde de regels en de input, en het programma deed de rest. Zelfs als je niet kunt programmeren, kun je voor eenvoudige taken de regels zelf wel bedenken. Neem bijvoorbeeld pseudocode (een beschrijving van de logica van een algoritme, zonder de strikte syntax van een programmeertaal) voor het berekenen van een gemiddelde. Deze kan er als volgt uitzien:

Klassieke, regelgebaseerde software is dus effectief voor taken die een vaste logica volgen, maar er is sowieso één domein waar zulke programma’s slecht presteren: het herkennen van patronen. Schrijf maar eens de pseudocode uit voor een programma dat moet herkennen of er een hond of kat op een afbeelding staat, zonder uiteraard specifieke diernamen in je code te gebruiken. Met de regel ‘als het dier twee ogen, twee oren, vier poten en een staart heeft, dan […]’ kom je er helaas niet.

Lees ook eens de 5-delige cursus over programmeren in Python met ChatGPT

Python-code voor de berekening van gemiddelden: de logica zelve.

Tip 02: Neuraal netwerk

Dit verklaart bijvoorbeeld ook waarom het bijvoorbeeld veel eenvoudiger is een robot te programmeren die volgens een geijkt patroon deksels op potjes plaatst dan een robot die peren plukt en het patroon van rijpe, volgroeide peren moet zien te herkennen in de boomgaard. Zo’n robot ontwikkelen blijkt behoorlijk complex. Mensen zijn hierin veel vaardiger, vooral omdat menselijke hersenen heel goed zijn in patroonherkenning, eigenlijk al vanaf de geboorte.

Bij patroonherkenning volgen de hersenen geen strikte regels, zoals ‘Als hij blauwe ogen, een bril en een stompe neus heeft, is het oom Ben’, maar reageren ze direct op het herkennen van het patroon: ‘Dit is oom Ben’. Dit is mogelijk doordat onze hersenen ongeveer 85 miljard neuronen bevatten, die via uitlopers of vertakkingen elektrische verbindingen (synapsen) kunnen maken met andere neuronen. Deze kunnen zich op hun beurt weer met andere neuronen verbinden, wat automatisch tot patroonherkenning leidt (zie ook het kader ‘Koekjes bakken’).

Neuraal netwerk: geactiveerde neuronen activeren via synapsen ook andere neuronen.

Koekjes bakken Stel je voor dat je een geur ruikt die je terugbrengt naar een vroegere ervaring, zoals de geur van versgebakken koekjes je doet herinneren aan oma’s keuken. Het proces in de hersenen werkt als volgt. Eerst detecteren geurreceptoren de geur, waarna signalen via neuronen naar de hersenen gestuurd worden. Deze signalen bereiken de reukcentra in de hersenen, waar neuronen de geur verwerken en beoordelen op basis van eerder opgeslagen informatie. De geurinformatie wordt via synapsen doorgegeven van het ene naar het andere neuron. Hierbij komen neurotransmitters vrij die zich aan receptoren op het volgende neuron binden. Deze neurale verbindingen bereiken delen van de hersenen die verantwoordelijk zijn voor het geheugen, zoals de hippocampus. Door dit netwerk van verbindingen wordt een oude herinnering, zoals die van de koekjes in oma’s keuken, geactiveerd.

Tip 03: Lagen

Computerwetenschappers begrepen al snel dat klassieke, regelgebaseerde programma’s niet geschikt waren voor patroonherkenning. Ze zagen in dat ze neurale netwerken moesten proberen na te bootsen in software, geïnspireerd door de werking van de menselijke hersenen.

Laten we een voorbeeld van een neuraal netwerk bekijken zoals dit wordt gebruikt om te bepalen of een foto een hond of een kat wordt getoond. De invoerlaag van het netwerk vertegenwoordigt het startpunt. Het bestaat uit wiskundige functies, hier neuronen genoemd, die elk een specifiek stukje informatie van de foto (met een hond of een kat) representeren, zoals kleur of helderheid van een pixel.

Na de invoerlaag komen de tussenliggende lagen. Elke laag bestaat opnieuw uit meerdere neuronen die informatie ontvangen van de voorgaande laag. Binnen elke neuron worden wiskundige berekeningen uitgevoerd om te bepalen hoe belangrijk de ontvangen informatie is, vergelijkbaar met hoe neuronen in het menselijk brein informatie ontvangen, verwerken en doorgeven. In deze tussenliggende lagen proberen de neuronen specifieke patronen in de gegevens te herkennen, zoals de vorm van de oren of de textuur van de vacht. Elke laag kan zich specialiseren in het herkennen van steeds complexere kenmerken. Deze lagen fungeren als de ‘denkende’ delen van het netwerk.

Uiteindelijk bereikt de informatie de uitvoerlaag. Het neuron in deze laag dat het meest actief is – dus met de hoogst gewogen waarde na alle berekeningen – geeft aan of de foto een hond of een kat toont.

Een digitaal neuraal netwerk bestaat uit een invoerlaag, tussenliggende lagen (verborgen) en een uitvoerlaag.

 Tip 04: Deep learning

Er is nu wel een structuur van een neuraal netwerk om honden en katten te onderscheiden, maar hoe weet de computer welke neuronen moeten worden geactiveerd en hoe sterk bepaalde verbindingen tussen neuronen moeten worden voor de correcte uitvoer? Daarvoor moet dit netwerk worden getraind. Dat gebeurt door vele duizenden foto’s van honden en katten aan het netwerk te tonen en telkens aan te geven of het om een hond of een kat gaat. De computer stuurt dan de verbindingen binnen het neurale netwerk bij, tot dit hopelijk uiteindelijk zelf het juiste antwoord geeft bij nieuwe foto’s. We geven dus als het ware de input en de output en laten de computer zelf het optimale netwerk vormen.

De binnenste lagen worden vaak ‘verborgen lagen’ genoemd, omdat we als mens nauwelijks zicht hebben op hoe de verbindingen binnen deze lagen precies worden gevormd. Een soort ‘black box’ dus, wat veel mensen ongerust maakt (zie ook tip 7). Op YouTube toont Andrej Karpathy uitgebreid hoe je neurale netwerken kunt trainen. Dit proces, een vorm van machine learning, staat bekend als ‘deep learning’ vanwege van de vele lagen in zulke netwerken.

Een heel klein stukje deep learning op het niveau van de computer.

Tip 05: Patronen genereren

Neurale netwerken zijn dus effectief voor het detecteren en herkennen van patronen, maar ze kunnen ook worden gebruikt om patronen te genereren. Hiervoor werden oorspronkelijk twee complementaire netwerken gebruikt: de Generative Adversarial Networks (GAN’s), bestaande uit een discriminator en een generator.

De generator maakt afbeeldingen die de discriminator beoordeelt. Aanvankelijk vertelt een menselijke operator de discriminator welke afbeeldingen, bijvoorbeeld van menselijke gezichten, echt zijn en welke door de generator zijn gemaakt. De generator leert vervolgens van de discriminator welke afbeeldingen het beste waren en waarom. Zo verbeteren beide netwerken elkaar tot de creaties van de generator bijna perfect zijn. Het resultaat van zo’n GAN zie je op www.thispersondoesnotexist.com (druk telkens op F5).

Er zijn ook andere technieken voor het genereren van patronen, zoals ‘diffusionmodellen’. Hierbij begin je met bijvoorbeeld 10% van een afbeelding om te zetten in ruis en geef je als opdracht deze beschadigde input naar een acceptabele output te transformeren, uiteraard met de nodige trainingsdata. Dit netwerk koppel je vervolgens aan een tweede netwerk dat afbeeldingen met 20% ruis omzet in afbeeldingen met 10% ruis, en zo verder, tot uiteindelijk ook een inputafbeelding met 100% ruis (of: niets) een degelijke output oplevert. Voorbeelden van dergelijke modellen zijn Stable Diffusion, Dall-E en Midjourney.

Lees ook de vergelijkende test: Dall-E of SDXL: wie maakt betere plaatjes?

Deze persoon bestaat niet (met dank aan GAN-netwerk StyleGAN2).

Tip 06: Menselijke taal

Beeldpatronen genereren bleek dus mogelijk, maar de uitdaging van menselijke taal is nog groter. Aanvankelijk werd er geëxperimenteerd met regelgebaseerde programma’s, zoals de chatbot ELIZA uit 1966, maar deze bleken al snel compleet ontoereikend. Ongeveer 10 jaar geleden kwam Word2Vec uit, gebaseerd op Natural Language Processing (NLP). Hierbij worden woorden die vaak in vergelijkbare contexten voorkomen, dicht bij elkaar in een vectorruimte – een soort getallenlijst – geplaatst. Dit helpt bij het ontdekken van taalkundige patronen en relaties tussen woorden, nuttig bij onder meer automatische vertaling en tekstanalyse.

De ontwikkeling ging nog een flinke stap verder met Large Language Models (LLM’s), zoals GPT (Generative Pre-trained Transformer). Terwijl NLP-modellen zich richten op het begrijpen van relaties tussen individuele woorden, kan men bij LLM’s hele tekstfragmenten laten interpreteren en ook genereren via een neuraal netwerk dat getraind is op ‘next word prediction’. Dus wanneer een AI-chatbot als ChatGPT of Gemini een woord genereert, dan is dit woord eigenlijk weinig meer dan een gegevenselement dat volgens het netwerk vaak volgt op voorgaande elementen. In de Playground van OpenAI (betaald met tokens geen onderdeel van ChatGPT) en bij Hugginface kun je experimenteren met een parameter als Temperature. Hoe hoger deze waarde, hoe groter de lijst met mogelijke volgende woorden waaruit GPT zal kiezen en dus hoe onvoorspelbaarder de tekst wordt.

Ook interessant om te lezen: Je creativiteit kent geen grenzen met Playground AI

Een gedicht met een blijkbaar al te hoge ‘temperatuur’.

Tip 07: Risico’s

Je hoeft nauwelijks tussen de regels door te lezen om te begrijpen dat AI risico’s met zich meebrengt, op verschillende vlakken. Om te beginnen zijn er voor neurale netwerken vaak enorm veel trainingsdata nodig, zoals teksten en afbeeldingen. Niet alleen roept dit vragen op met betrekking tot onze privacy (het Amerikaanse bedrijf ClearView verkoopt gezichtsherkenningstechnologie op basis van AI aan overheden en zelfs privé-instanties), ook op het vlak van auteursrecht zijn er heel wat bedenkingen. Mag bijvoorbeeld een LLM zomaar al die data gebruiken en verwerken tot ‘eigen’ content? Bovendien valt het niet uit te sluiten dat deze trainingsdata al dan niet bewust incompleet of bevooroordeeld zijn, wat tot gekleurde uitkomsten kan leiden, de zogeheten bias. Ook het feit dat we eigenlijk niet goed weten hoe een neuraal netwerk tot een bepaalde uitkomst komt, kan ongemerkt bias introduceren. Het gebeurt bovendien geregeld dat een AI-chatbot zomaar dingen verzint en die doodleuk mixt met correcte feiten, het zogeheten hallucineren.

Verder is er ook een groter risico op deepfake, waarbij audio, foto’s of video’s bewust worden gemanipuleerd met behulp van AI, zoals voor het verspreiden van nepnieuws.

Een deepfake-foto van Frans Timmermans die gebruikt is om nepnieuws te verspreiden (let bijvoorbeeld op zwevend wijnglas, verschillende brilglazen, ontbrekende rugleuning).

Tip 08: Verdere evolutie

Het risico bestaat ook dat AI-toepassingen aanzienlijke verschuivingen op de arbeidsmarkt zullen veroorzaken, waardoor sommige beroepen overbodig worden. Zoeken naar AI and <beroepsgroep> laat vaak al zien hoe(zeer) AI invloed heeft op verschillende sectoren. Anderzijds is het realistischer dat je baan niet door AI zelf, maar door iemand die AI gebruikt, wordt overgenomen. AI heeft namelijk nog geen ‘bewustzijn’ ontwikkeld, maar de snelheid en richting van de evolutie van AI-technologie blijft een groot vraagstuk. Terwijl GPT-3 over 175 miljard parameters beschikte (elementen die tijdens de trainingsfase kunnen worden aangepast om datapatronen te herkennen), heeft GPT-4 er al tien keer zoveel (zo’n 1,7 biljoen).

Hoewel dit aantal nog steeds veel minder is dan het menselijke brein heeft, geloven sommigen dat zulke netwerken zo breed inzetbaar zullen worden dat we kunnen spreken van Artificial General Intelligence (AGI); AI die een breed scala aan taken beter kan uitvoeren dan mensen. Er heerst zelfs de vrees dat zo’n netwerk zelfstandig een nieuw AI-netwerk kan ontwerpen. Zeg maar een GPT-6, ontwikkeld door GPT-5. Zo’n moment wordt de ‘singulariteit’ genoemd, waarbij zelfversterkende AI-systemen buiten menselijke controle exponentieel slimmer worden, waardoor de toekomst volledig onvoorspelbaar wordt.

Het moment van singulariteit (een interpretatie door Dall-E 3).

Tip 09: Laagdrempelig

Hoewel veel mensen zich misschien niet bewust zijn van de vele toepassingen van AI, hebben ze er waarschijnlijk al vaak ongemerkt mee te maken (gehad). Zo is het ontgrendelen van je smartphone met gezichtsherkenning al een mooi voorbeeld van AI. De software herkent je gezicht, ondanks verschillende hoeken, belichting en gezichtsuitdrukkingen. Ook gebruikers van Google Foto’s zullen hebben gemerkt dat de software uitstekend personen herkent, zelfs over verschillende leeftijden heen. Apps als Google Translate of Microsoft Translator, die tekst uit foto’s herkennen en direct vertalen, maken eveneens gebruik van AI. Ook voor het vertaalproces zelf blijken AI-technieken trouwens beter te werken dan een regelgebaseerde aanpak.

Ook natuurliefhebbers kunnen er baat bij hebben met de populaire, gratis app Obsidentify. Richt je camera op een dier of wilde plant, en de app identificeert de soort dankzij duizenden gelabelde foto’s, door gebruikers geüpload naar websites als www.waarneming.nl en www.waarnemingen.be. En met de gratis app Merlin Bird ID kun je vogels herkennen op basis van hun gezang.

Obsidentify maakt dankbaar gebruik van een massale hoeveelheid trainingsdata.

In het nieuws In dit artikel hebben we heel wat concrete AI-toepassingen vermeld, maar het kan ook interessant zijn om het actuele nieuws te volgen, aangezien AI vaak ter sprake komt. Wijzelf noteerden op een paar dagen onder meer de volgende uiteenlopende ontwikkelingen:

  • AI was een van de hoofdthema’s op CES 2024 in Las Vegas, met een hele reeks innovatieve producten.
  • Ook de wereldwijde top 4 van consultancybedrijven (Deloitte, KPMG, PwC en EY) is actief bezig met het ontwikkelen van eigen geavanceerde generatieve AI-platformen.
  • Microsoft plant de lancering van een nieuw toetsenbord met een Copilot-toets, bedoeld om snel AI-assistentie op te roepen in Windows en Office-toepassingen.
  • AI-modellen kunnen ontbossing in het Amazonewoud detecteren met een nauwkeurigheid van minstens 90%.
  • Amazon werkt aan de ontwikkeling van een eigen zoekmachine die gebaseerd is op AI.

Tip 10: Tekst

AI is al jaren bekend, maar werd vooral populair door de ontwikkeling van generatieve AI-chatbots zoals ChatGPT van OpenAI. Eind 2022 brak ChatGPT echt door en inmiddels is LLM GPT-4 gelanceerd, met binnenkort mogelijk de integratie van GPT-5 in ChatGPT. ChatGPT is gratis te gebruiken via https://chat.openai.com of via de officiële mobiele app, waarmee ook gesproken dialogen mogelijk zijn. De gratis versie biedt toegang tot LLM GPT-3.5, die beperkter is dan GPT-4 (zie ook tip 8). De Plus-versie (ongeveer 23 euro per maand), biedt toegang tot GPT-4 en enkele extra’s, zoals geen wachttijden, toegang tot beeldgenerator Dall-E (zie ook tip 11), recentere kennis, het uploaden van eigen documenten (zoals docx en pdf) ter analyse, het installeren van extensies en het ontwerpen van eigen ‘persona’s’ (GPT’s genoemd). Sinds kort kun je ook gepubliceerde GPT’s van medegebruikers zoeken en gebruiken.

Maar er zijn nog andere, gratis chatbots die GPT-4 gebruiken, zoals Microsoft Copilot, dat steeds meer in Windows wordt geïntegreerd (zie ook het kader ‘In het nieuws’), of Gemini, de chatbot van Google. Voor wie geïnteresseerd is in nog meer AI-chatbots, via deze webpagina vind je een overzicht van zo’n twintig andere bots.

Van eksters tot broeken: GPT-4 (b)lijkt ‘intelligenter’ dan GPT-3.5.

Lees ook: Alles over Google Gemini, Googles antwoord op ChatGPT

Tip 11: Beeld

OpenAI heeft niet alleen de bot ChatGPT ontwikkeld, maar ook de beeldgenerator Dall-E. Deze is inmiddels aan versie 3 toe en is geïntegreerd in ChatGPT Plus, maar je kunt het ook gratis gebruiken via het al eerder vermelde Copilot. Daarnaast zijn er nog heel wat andere generatoren die je gratis kunt gebruiken (of uitproberen). We denken aan Craiyon, Midjourney, DreamStudio, Canva AI en Firefly van Adobe (je kunt gratis 25 beelden per maand laten maken of bewerken). De meeste van deze beeldgeneratoren ondersteunen ook outpainting: je kunt het canvas dan vergroten en hier allerlei objecten aan toevoegen, gebaseerd op patronen en kenmerken van de bestaande afbeelding.

Beelgenerator Dall-E 3 aan het werk in Microsoft Copilot.

Tip 12: Audio

In ChatGPT kun je tegenwoordig gesproken dialogen voeren met AI, maar er zijn meer interessante AI-toepassingen in audio. Bijvoorbeeld radiostations die volledig op AI draaien. Luister bijvoorbeeld naar listen.streamon.fm/radiogpt. RadioGPT selecteert op basis van GPT en TopicPulse muziek en produceert scripts, gecombineerd met AI-spraaktechnologie, door socialmedia- en nieuwsbronnen te scannen.

Voor spraaktechnologie is Adobe Podcast een aanrader. Upload een audiobestand en de dienst verwijdert storende achtergrondgeluiden en optimaliseert het geluid met AI. Je kunt het resultaat als wav-bestand downloaden.

Whisper, een opensource-spraakherkenningssysteem, is beschikbaar als app of API en herkent spraak in verschillende talen en dialecten, zelfs met achtergrondgeluiden en variabele spreeksnelheden, en zet dit om naar tekst.

Soundraw is een AI-audiogenerator, handig voor muziek bij video’s of presentaties. Selecteer lengte, genre, stemming en thema en beluister verschillende tracks. Downloaden is helaas alleen mogelijk met een betaald account.

Een stap verder gaat Suno. Vul een uitvoerige beschrijving in van het gewenste muziekstuk en even later krijg je de gevraagde muziek, inclusief songtekst en gezongen tekst. We vonden dit behoorlijk indrukwekkend.

Een stevig rapnummer over kippen die slapengaan? Klinkt prima!

Tip 13: Video

Het lijdt geen twijfel dat beeldgeneratoren zoals Dall-E en Midjourney binnenkort worden uitgebreid met de mogelijkheid om videobeelden te genereren op basis van een beschrijving of eventueel een voorbeeldfoto of -video. Maar je hoeft hier niet eens op te wachten, want met HeyGen is dit tot op zekere hoogte al mogelijk. Deze dienst is primair bedoeld voor het creëren van natuurlijk klinkende menselijke stemmen, maar biedt ook de optie om deze stemmen te combineren met animaties en video, waardoor het lijkt alsof de persoon echt aan het praten is.

Microsoft Clipchamp, geïntegreerd in Windows, benut AI dan weer op een andere manier voor video’s. Met de knop Een video met AI maken kun je media zoals audio, video en foto’s toevoegen en nadat je informatie over de titel, stijl en gewenste lengte hebt verstrekt, genereert Clipchamp automatisch een bijpassende video.

Tot slot vermelden we ook graag Channel1, dat mogelijk tegen de tijd dat je dit leest al actief is. Channel1 is namelijk een gepersonaliseerd tv-nieuwskanaal dat volledig wordt samengesteld op basis van generatieve AI.

Clipchamp analyseert je media-input en genereert op basis hiervan een passende video.

Training Je kunt zelf een AI-netwerk trainen zonder je te verdiepen in het ontwerp en de verbindingen van het netwerk. Een gebruiksvriendelijke tool hiervoor is Teachable Machine. Deze tool stelt je in staat om zonder programmeerkennis snel machinelearning-modellen te maken voor websites of apps Je kunt modellen trainen met eigen afbeeldingen, bijvoorbeeld van je webcam, of met audio. Het resultaat is een AI-tool die de gewenste patronen kan herkennen. Deze tool kan gecombineerd worden met een microcontroller, zoals Raspberry Pi of Arduino voor automatiseringsprojecten.

Voor een krachtigere, maar wel minder toegankelijke optie is er Cloud AutoML (proefaccount beschikbaar met gratis credits voor 90 dagen). Hier kun je een machinelearning-systeem trainen door data als afbeeldingen of tabelgegevens te uploaden en te labelen of categoriseren. Het systeem traint vervolgens een model, waarvan je de prestaties kunt evalueren en inzetten voor applicaties. Microsoft biedt een soortgelijke tool aan met Custom Vision.

Upload een reeks foto’s uit twee ‘klassen’ en het AI-model herkent automatisch tot welke klasse nieuwe foto’s behoren.

Watch on YouTube
▼ Volgende artikel
Consumenten testen: de Philips STH5030/20 5000 Series-kledingstomer
© Philips
Huis

Consumenten testen: de Philips STH5030/20 5000 Series-kledingstomer

Op zoek naar een snelle en handige oplossing om je kleding kreukvrij te maken zonder gedoe met een strijkplank? De Philips STH5030/20 5000 Series-kledingstomer belooft binnen enkele seconden klaar te zijn voor gebruik. Maar hoe goed werkt hij echt? Het Review.nl Testpanel heeft dit compacte apparaat uitgebreid getest.

De Philips STH5030/20 5000 Series-kledingstomer is een handige en compacte oplossing voor wie snel en moeiteloos kreukvrije kleding wil. Met een korte opwarmtijd, een verstelbare kop en een krachtige stoomfunctie is dit apparaat ideaal voor dagelijks gebruik en op reis.

Snel en compact stomen zonder gedoe

De Philips STH5030/20 is een draagbare kledingstomer die in slechts 30 tot 35 seconden opwarmt en direct klaar is voor gebruik. Hij heeft twee standen: een Eco-modus voor waterbesparing en een Max-modus voor hardnekkige kreukels. Met een continue stoomafgifte tot 24 gram per minuut helpt het apparaat kleding niet alleen te ontkreuken, maar ook op te frissen. Dat maakt het een handige tool voor mensen die hun kleding snel willen bijwerken zonder een strijkplank te gebruiken. Bovendien wordt het apparaat geleverd met een opberghoes die ook als handschoen dient, zodat gebruikers zich niet verbranden tijdens het stomen.

Uit de testresultaten blijkt dat veel gebruikers het compacte formaat en het lichte gewicht waarderen. Zo zegt Ndijkhuizen: "Geen onhandige strijkplank meer nodig, gewoon op een hanger en stomen maar."

©Philips

Strak en stijlvol design met praktische functies

Over het ontwerp van de Philips STH5030/20 zijn de meeste testers enthousiast. De verstelbare kop maakt het mogelijk om zowel horizontaal als verticaal te stomen, wat handig is voor verschillende kledingstukken en stoffen. Ook het compacte formaat en de opvallende koraalroze of rode kleur worden gewaardeerd.

Volgens Daphnievd voegt de kleur zelfs iets extra’s toe: "Het is een superhandig apparaat en de kleur is een erg leuk detail, vooral in een vrouwenhuishouden. Het maakt het nét wat gezelliger." Ook KirstenB noemt het design een pluspunt: "Het apparaat is klein, handzaam en heel makkelijk te gebruiken. Op de mooie koraalroze kleur ben ik verliefd."

Toch zijn er enkele testers die opmerken dat het snoer aan de korte kant is, wat de bewegingsvrijheid enigszins beperkt. Rocky1998 zegt hierover: "De stroomkabel is wel wat aan de korte kant en had wat langer mogen zijn in mijn mening."

©Philips

Krachtige prestaties voor een handstomer

Qua prestaties scoort de Philips STH5030/20 goed bij de testers. De meeste gebruikers merken op dat lichte stoffen moeiteloos worden ontkreukt en dat het apparaat ideaal is voor snelle opfrisbeurten. FabianMR benadrukt hoe handig dit is 's ochtends: "De stomer werkt snel en efficiënt, waardoor je ’s ochtends nog even snel je kleding kreukvrij kunt krijgen."

Bij dikkere stoffen of diepe kreukels heeft het apparaat iets meer tijd en moeite nodig. MJOMJ merkt bijvoorbeeld op: "Met dikkere stoffen en diepe kreukels heeft deze handstomer wel moeite, maar hij is dan ook niet te vergelijken met het traditionele strijkijzer."

Voor wie vooral snel en gemakkelijk kreukels wil verwijderen uit blouses, jurken en colberts, lijkt deze stomer een uitstekende keuze.

©Philips

Gebruiksgemak: snel, eenvoudig en handig op reis

De testers vinden de kledingstomer eenvoudig in gebruik. Het lichte gewicht en de compacte vorm maken het apparaat ideaal om mee te nemen op reis. Maro bevestigt dit: "Handig voor onderweg, vakantie of op zakenreis. Maar ik zou zeker ook zeggen gewoon lekker voor thuis." Ook GeaR1989 is enthousiast: "De twijfel werd bij het eerste gebruik al weggenomen. Wat een handig ding is dit!"

Wel zijn er enkele kanttekeningen bij de gebruikservaring. Een veelgenoemd punt is dat de stoomknop continu moet worden ingedrukt tijdens het gebruik. Sharon van Aalsum zegt hierover: "De minpunten, zoals het kleine waterreservoir en constant te moeten drukken op de stoomknop, kunnen echter voor wat ongemak zorgen bij langer gebruik."

✅ Pluspunten
  • Compact en licht, ideaal voor op reis

  • Snel opgewarmd en direct klaar voor gebruik

  • Werkt goed op lichte stoffen en voor snelle opfrisbeurten

  • Stijlvol design en verstelbare kop voor extra gebruiksgemak

❌ Minpunten
  • Kort snoer beperkt bewegingsvrijheid

  • Stoomknop moet constant ingedrukt worden

  • Werkt minder goed bij dikke stoffen en diepe kreukels

Conclusie: snel en handig met een paar kleine minpunten

De Philips STH5030/20 5000 Series-kledingstomer wordt door testers gemiddeld beoordeeld met een 8,7. Het is een handig apparaat voor dagelijks gebruik en reizen, dat snel opwarmt en kleding effectief ontkreukt. De verstelbare kop, het compacte formaat en de stijlvolle kleur worden vaak als pluspunten genoemd.

Meer lezen over deze Philips-handstomer?

Ga naar Kieskeurig.nl!
▼ Volgende artikel
De lente komt eraan! Dit doe je in februari in de tuin
© Olga Seyfutdinova
Huis

De lente komt eraan! Dit doe je in februari in de tuin

De winter loopt op zijn eind, ook al voelt dat niet altijd zo aan de temperatuur. Maar kijk om je heen: het eerste groen verschijnt weer in de tuin. Winterklokjes en krokussen laten zich zien en aan sommige bomen en struiken zie je al de eerste knoppen verschijnen. Tijd dus om de handen uit de mouwen te steken – de tuin roept!

Dit doe je in februari is het tijd om: 🪻 Eenjarige zomerbloemen voorzaaien 🪻 Kale plekken in het gazon inzaaien 🪻 Groene aanslag van de bestratingverwijderen 🪻 Bepaalde (fruit)bomen snoeien

Weten wat je de rest van het jaar in de tuin kunt doen? Kijk dan op onze jaarkalender!

Voorzaaien, planten en verpotten

Zaai eenjarige zomerbloemen alvast binnen voor, zodat je later in het seizoen sterke planten hebt. Buiten kun je bomen en struiken verplaatsen, zolang het niet vriest. Kuipplanten die in de garage of schuur overwinteren, hebben nu wat meer water nodig. Ook potplanten buiten kunnen wel een scheut gebruiken als ze lange tijd droog staan.

Omdat de nachten nog koud kunnen zijn, is het verstandig om bloeiende bollen in potten en bakken te beschermen met vliesdoek. Een camelia kun je 's nachts afdekken met noppenfolie, maar haal die er overdag weer af zodra de temperatuur boven nul komt.

Wil je wat extra kleur in de tuin? Zet viooltjes en primula's neer. Ze kunnen goed tegen de kou en zorgen meteen voor een lente-achtig gevoel.

©MaÅgosia Karniewska

Aandacht voor je gazon

Strooi in de eerste twee weken van februari kalk over het gazon en de borders. Wil je een nieuw gazon aanleggen? Dan is het tijd om aan de slag te gaan. Spit en egaliseer de grond, zodat die klaar is voor het inzaaien of leggen van gras. Als je gazon vol molshopen ligt, kun je de aarde met een bezem over het gras verspreiden. Is het droog en vorstvrij? Dan kun je de graskanten bijwerken en kale plekken opnieuw inzaaien. Vermijd lopen over het gazon tijdens de vorst, want dat kan het gras beschadigen.

Onkruid wieden en groene aanslag wegvegen

Laat de schoffel voorlopig nog even staan, want daarmee kun je vaste planten beschadigen die nog onder de grond zitten. Pluk het onkruid liever met de hand, zodat je de jonge planten niet verstoort. Een groen laagje op het terras veeg je weg met zand en een bezem. Wil je het grondiger aanpakken? Er zijn verschillende manieren om groene aanslag te verwijderen. Zeg maar dag tegen die gladde laag met deze tips 🢱

Zo verwijder je groene aanslag van je terras en tegels

©Vely

Snoeien (maar niet alles en met mate)

In februari kun je bepaalde bomen en struiken snoeien, zolang het niet vriest en er geen vorstperiode wordt voorspeld. Is dat wel het geval, wacht dan op een warmere periode. Begin bij de dakplataan en snoei de takken die recht omhoog groeien. Heb je de leilinde nog niet gesnoeid? Knip de takken dan nu terug tot een paar centimeter vanaf de hoofdtakken. Ook heesters kunnen een snoeibeurt gebruiken. Ontstaan er grote wonden bij bomen? Dek ze af met wondbalsem om infecties te voorkomen.

Haal bij klimplanten, zoals klimop, wilde wingerd en trompetklimmer, het oude blad weg. Verwijder ook de ranken op plekken waar ze niet moeten groeien, zoals onder de dakrand en rondom kozijnen.

Februari is daarnaast een goede maand om fruitbomen te snoeien. Wacht wel met het snoeien van fruitbomen met steenvruchten, zoals de kersenboom of perzikboom. De druif en kiwi moeten nu wél gesnoeid worden, want zodra de sapstromen op gang komen, ben je te laat.