ID.nl logo
Zekerheid & gemak

Revolutie in zonne-energie: de organische zonnecel

De Groningse wetenschapper Kees Hummelen is een van de pioniers op het gebied van de organische zonnecel, een goedkoper en slanker alternatief voor de dikke zonnepanelen zoals we die kennen. Na 22 jaar onderzoek is zijn ‘kindje’ bijna klaar voor de commerciële markt.

Het begon allemaal in 1995, toen Hummelen op 39-jarige leeftijd in een lab in Californië als postdoc zocht naar een nieuwe aidsremmer, en daarbij per ongeluk stuitte op een product dat later de sleutel bleek voor de ontwikkeling van de plastic zonnecellen.

“We hadden een vergadering waarbij scheikundigen en natuurkundigen bij elkaar kwamen”, vertelt de onderzoeker vanachter zijn bureau op de Zernike Campus. “Die natuurkundigen zeiden: “We hebben een nieuw soort zonnecel ontdekt, maar er is één probleem: het werkt niet.” Dat wil zeggen, ze zochten een mengsel van polymeer (verbindingen die uit een hele reeks van dezelfde moleculen bestaan, red.) met C60.

Wat is C60? Fullerenen zijn moleculen die volledig uit koolstofatomen bestaan en de vorm hebben van een bal. Deze sferische structuur bestaat uit zeshoeken en vijfhoeken. De kleinste bal is C60. Dit molecuul bestaat uit zestig koolstof atomen en lijkt daarmee precies op een voetbal. C60 wordt ook wel Buckminster Fullereen genoemd, vernoemd naar Richard Buckminster Fuller, de uitvinder van de geodetische koepel.

Maar die C60 wil niet mengen, dus dat was een probleem. Toen duurde het een halve seconde en heb ik m’n hand omhoog gedaan, en zei: “Daar heb ik wel wat voor. Ik heb een stofje, PCBM, dat maak ik om een heel andere reden. Maar dat is een mooi oplosbaar en mengbaar fullereen derivaat, dus gebruik dat maar.” En dat was ‘m. Dat was het begin van alles.”

Hoe werkt een plastic zonnecel?

Organische zonnecellen – ook wel plastic zonnecellen genoemd – bestaan uit een lichtabsorberend polymeer dat positieve lading kan geleiden en fullerenen die elektronen accepteren en vervolgens geleiden. De zonnecel werkt als volgt: een polymeer absorbeert zonlicht. Door de energie van het licht kan een elektron van het polymeer naar een hoger energieniveau springen. Als er een goed elektronaccepterend fullereen in de buurt is kan die elektron hiernaar overspringen.

Er blijft nu een positieve lading over op het polymeer, terwijl het fullereen een negatieve lading heeft. Als er nanobuisjes op het materiaal zijn aangesloten – die fungeren als superkleine elektriciteitsdraadjes – kan de positieve lading naar de ene elektrode reizen terwijl de negatieve lading naar de andere elektrode kan reizen. En zo wordt stroom opgewekt.

Grote voordeel van plastic zonnecellen is dat ze goedkoop zijn om te maken, en dat het materiaal dun en flexibel is. Een laag van een organische cel is zelfs duizend keer dunner dan die van een silicium zonnecel. Maar het rendement is wel een probleem. Dat stijgt niet snel genoeg. Om plastic zonnecellen commercieel interessant te maken moet de cel ook buiten het lab 10 procent rendement halen. En dat is nog steeds niet het geval.

©PXimport

‘En nu komt het’, zegt de chemicus. ‘We zijn nu 22 jaar verder. En wat is er gebeurd in de siliciumwereld? Een totale, ongelooflijke, schitterende revolutie als het gaat om de prijsontwikkeling. Ik zou wel gek zijn als ik niet zou kijken of mijn stof daar niet iets goeds kan doen.’

Hummelen vergelijkt het met de ontwikkeling van computerprocessoren. Gordon Moore voorspelde vijftig jaar geleden dat de snelheid van de chips in onze computers zich steeds zou blijven verdubbelen. En dat tegen dezelfde kosten. Eenzelfde ‘wet’ geldt ook voor de silicium zonnecellen, denkt Hummelen, maar dan op het gebied van de prijs.

“Twee jaar geleden kwam uit de siliciumindustrie een rapport dat zei: over tien jaar kost wat we nu doen de helft van het geld. Het is nu dus twee jaar later, en we zijn er ongeveer. Supergoed! Als er nu collega’s zijn die zeggen: “Ik werk aan een nieuw type zonnecel en die wordt aanzienlijk goedkoper dan silicium, en daarmee gaan we ervoor zorgen dat zonnepanelen betaalbaar worden.” Dan zeg ik: Bullshit, het is nu al ongelooflijk betaalbaar, en het gaat met zo’n noodgang dat over tien jaar de wereld er weer heel anders uitziet.”

En daar komt nog bij dat het rendementsrecord van de silicium zonnecellen, met 26 procent, dat van de plastic modellen doet verbleken. Plastic kan gewoon nog niet tegen silicium op.

Perovskiet

Dat betekent niet dat de medeontdekker van de plastic zonnecel niet meer achter zijn ‘kindje’ staat. Er is nog steeds een belangrijke rol voor plastic weggelegd in de toekomst, denkt hij. Maar het betekent wél dat Hummelen en zijn team breder onderzoek zijn gaan doen. Hij moet ook wel, want de handel in PCBM neemt af, geeft de onderzoeker toe, omdat wetenschappers nu massaal achter een ander materiaal aanrennen.

‘Dus we kijken naar de ontwikkeling van de organische zonnecel, maar we kijken ook naar de ontwikkeling van dat nieuwe materiaal: perovskiet’, vertelt hij.

We kijken ook naar de ontwikkeling van nieuw materiaal: perovskiet, de heilige graal in zonnecellenonderzoek

-

Het is de nieuwe heilige graal in het zonnecellenonderzoek, en werd in 2013 door vooraanstaand wetenschapstijdschrift Science al betiteld als doorbraak. Het is spotgoedkoop, eenvoudig te maken, absorbeert veel zonlicht en geleidt bijzonder goed. Daarnaast is het dun, gemakkelijk te printen en is te combineren met de populaire en commercieel veel interessantere silicium zonnecellen.

Perovskiet is een klasse van materialen die dezelfde kristalstructuur hebben als calcium-titanium-oxide (CaTiO3). Het werd begin 19e eeuw ontdekt door de Russische mineraloog Lev Perovski, maar pas in 2009 door Japanners voor het eerst toegepast in een zonnecel. Toen werd al een efficiëntie van 3 procent gehaald. Inmiddels staat het record op 24 procent. “Het is een hype”, constateert Hummelen.

Alternatieven

Zijn collega Maria Antonietta Loi, hoogleraar fotofysica en opto-elektronica in Groningen, richt sinds vier jaar veel van haar onderzoek op de nieuwe technologie. Het gaat silicium niet vervangen, denkt ze. “Als je dacht dat de auto-industrie conservatief was, de halfgeleiderindustrie is nog veel erger”, zei ze eerder in een interview.

“We kijken daarom naar een combinatie van beide, perovskiet en silicium”, vertelt Hummelen. “Stel, je kunt een goedkoop laagje perovskiet boven op het silicium leggen. Dan kun je het rendement behoorlijk omhoog tillen, zonder dat het veel meer kost.” De efficiëntie gaat dan misschien wel naar 35 procent, denkt Loi.

Perovskiet zonnecellen zijn gemaakt van een mix van organische moleculen en anorganische elementen die samen licht omzetten in elektriciteit. “Ze zijn hybride”, zegt Hummelen. “En in die perovskieten zonnecel zit meestal ook een organische laag als geleider. En by the way, daar is PCBM weer heel erg goed in. Is dat niet leuk?”

Maar perovskiet heeft ook nadelen. Het is bijvoorbeeld nogal gevoelig voor vocht, waardoor het rendement in de buitenlucht snel afneemt. Daarnaast bestaat het vaak uit een verbinding van onder meer ammoniak, jood en lood. En dit laatste is zeer giftig. Daarom wordt aan de Rijksuniversiteit Groningen ook geëxperimenteerd met alternatieven voor lood, zoals tin en bismut.

Zonne-energie heeft de toekomst, maar er staan dus nog genoeg uitdagingen voor de deur. Daarover lees je spoedig meer in een aankomend artikel.

▼ Volgende artikel
5 redenen waarom citroen een wondermiddel is voor je was én je wasmachine
© africaimages.com (Olga Yastremska, Africa Images)
Huis

5 redenen waarom citroen een wondermiddel is voor je was én je wasmachine

Dat een wasmachine zonder moeite vuile was schoon krijgt, spreekt voor zich. Toch kan een kleine natuurlijke hulp extra verschil maken. Geen chemisch middel, maar iets wat je waarschijnlijk al in huis hebt: citroensap. Dat zorgt voor een frissere was, een schonere trommel en een beter onderhouden machine.

In dit artikel

Citroensap blijkt niet alleen handig in de keuken, maar ook tijdens het wassen. Het natuurlijke zuur (citroenzuur, inderdaad) helpt zeepresten verwijderen, voorkomt geurtjes en houdt wit echt wit. Daarnaast verzacht het hard water en maakt het wasverzachters overbodig. In dit artikel lees je hoe en waarom citroen zo'n krachtig hulpmiddel is voor zowel je kleding als je wasmachine.

Lees ook: Vetluis in je wasmachine? Zo kom je er vanaf!

Hoewel de meeste wasmachines hun werk prima doen, kun je ze met een beetje citroensap een handje helpen. Dit natuurlijke zuur werkt verrassend effectief tegen vuil, kalk en bacteriën. Hieronder lees je vijf manieren waarop citroen je was én je machine schoner, frisser en duurzamer maakt.

1. Verwijdert zeepresten

Na het wassen blijft er vaak wat wasmiddel of wasverzachter achter in de trommel of in je kleding. Het gevolg? Je wasmachine kan muf gaan stinken, net zoals de was die uit zo'n machine komt. Een scheutje citroensap in het bakje voor de wasverzachter helpt om die resten los te weken. Zo blijft je wasmachine schoon en ruikt je was écht fris.

2. Neutraliseert nare geuren

Citroensap werkt licht antibacterieel en neutraliseert geuren. Dat is vooral handig bij sportkleding, handdoeken of keukenlinnen dat snel minder fris ruikt. Citroen maakt je was dus niet alleen schoner, maar ook frisser.

©africa-studio.com (Olga Yastremska and Leonid Yastremskiy)

3. Werkt tegen hard water

Woon je in een gebied met hard water, dan merk je dat wasmiddel minder goed schuimt en kleding stugger aanvoelt. Citroenzuur bindt kalkdeeltjes, waardoor het water zachter wordt en het wasmiddel beter zijn werk doet. Zo bescherm je zowel je kleding als de binnenkant van je machine tegen kalkaanslag.

🍋 Onderhoudstip: laat eens per maand een lege wasmachine draaien op 60 graden met een scheut citroensap. Zo voorkom je kalkaanslag en blijft de binnenkant fris.

4. Houdt wit écht wit

Citroensap heeft een mild blekend effect dat witte kleding helderder maakt zonder het risico van verkleuring. Vooral fijn voor lakens, T-shirts en handdoeken. Anders dan chloor is citroensap veilig voor de meeste stoffen* en vriendelijker voor je huid én het milieu.

*Maar niet voor alle stoffen

Citroensap is een zuur en daardoor minder geschikt voor zijde, wol en linnen. Deze natuurlijke vezels reageren gevoelig op zuren en kunnen door herhaald contact hun glans of structuur verliezen. Ook bij kleding met metalen details (zoals ritsen of knopen) is voorzichtigheid geboden, omdat zuur oxidatie kan versnellen.

5. Zorgt voor zachtere kleding

Heb je snel last van wasverzachter of vind je de geur te sterk? Citroensap verzacht het water op een natuurlijke manier, zonder kunstmatige toevoegingen. Zo blijft je kleding soepel en zacht, ook zonder de synthetische stoffen die in veel wasverzachters zitten. Dat is prettiger voor gevoelige huid én beter voor het milieu, omdat er minder chemische resten in het afvalwater terechtkomen.

Zo gebruik je het: voorbeeldwas

Wil je het zelf proberen? Zo doe je dat veilig:

Voor een volle trommel witte of lichte was giet je een half kopje citroensap (ongeveer 120 ml) in het vakje van de wasverzachter. Gebruik je gewone wasmiddel, maar sla extra bleek of wasverzachter over. Was op 40 graden en haal je was direct uit de machine zodra het programma klaar is.

Tot aan de laatste druppel uitgeperst...

.. dat lukt alleen met een goede juicer (ook voor sinaasappels!)

▼ Volgende artikel
Nieuwe Samsung Galaxy Z TriFold vouwt niet één, maar twee keer open
© Samsung
Huis

Nieuwe Samsung Galaxy Z TriFold vouwt niet één, maar twee keer open

Samsung breidt zijn reeks opvouwbare toestellen uit met de Galaxy Z TriFold, een smartphone die twee keer openklapt tot een 10-inch scherm. Het toestel combineert de draagbaarheid van een telefoon met het gebruiksgemak van een tablet en richt zich op gebruikers die onderweg willen werken of kijken op een groot scherm.

Wanneer hij is dichtgevouwen, is de TriFold nauwelijks dikker dan een gewone telefoon, met 3,9 millimeter op het dunste punt. Geopend ontvouwt zich een scherm zo groot als drie 6,5-inch smartphones naast elkaar. Daarmee is er ruimte voor meerdere apps tegelijk, bijvoorbeeld voor tekstverwerking, videobellen of browsen. De taakbalk onderin het scherm brengt recente apps snel terug in beeld, en Samsung heeft eigen apps zoals Mijn bestanden en Health aangepast voor het grote formaat.

De Galaxy Z TriFold draait op een aangepaste Snapdragon 8 Elite-chip en beschikt over een 200-megapixelcamera. De batterij van 5.600 mAh is in elk paneel geplaatst voor een betere balans en ondersteunt snelladen tot 45 watt. Samsung gebruikt voor dit model nieuwe scharnieren met een dubbele railstructuur, die het openen soepeler maken en de ruimte tussen de schermdelen verkleinen. Het frame bestaat uit versterkt aluminium en een titanium behuizing rond de scharnieren voor extra stevigheid zonder extra gewicht.

Voor werken en multitasken is DeX voortaan rechtstreeks op het toestel beschikbaar, zonder externe monitor. Gebruikers kunnen tot vier werkruimten tegelijk openen en apps tussen schermen slepen, eventueel met een aangesloten muis en toetsenbord. In combinatie met Galaxy AI-functies zoals Photo Assist en Browsing Assist kunnen bewerkingen, samenvattingen en vertalingen direct op het scherm worden uitgevoerd.

©Samsung

Het toestel is niet alleen bedoeld om mee te werken, maar ook voor ontspanning. Het hoofdscherm biedt een helderheid tot 1.600 nits, het coverscherm tot 2.600 nits, beide met een verversingssnelheid tot 120 Hz. Dankzij het Dynamic AMOLED 2X-paneel en de minimale vouwlijn moet beeldweergave vloeiend en scherp blijven.

De Galaxy Z TriFold verschijnt op 5 december 2025 in Zuid-Korea en later in onder meer China, Taiwan, Singapore, de Verenigde Arabische Emiraten en de Verenigde Staten. een prijs is nog niet bekend. Ook is helaas nog niet bekend wanneer de Samsung Galaxy Z TriFold in Nederland op de markt komt.

Samsung DeX

Met DeX verandert een Galaxy-telefoon in een soort desktopomgeving. Op de Z TriFold draait DeX zelfstandig, zonder monitor of pc. Gebruikers kunnen meerdere vensters openen, bestanden beheren en apps naast elkaar gebruiken – vergelijkbaar met een laptop.

©Samsung

Specs Samsung Galaxy Z TriFold

OnderdeelSpecificatie
Hoofdscherm10.0-inch QXGA+ Dynamic AMOLED 2X (2160x1584), 269 ppi, 1600 nits, 120 Hz adaptief (1–120 Hz)
Coverscherm6.5-inch FHD+ Dynamic AMOLED 2X (2520x1080, 21:9), 422 ppi, 2600 nits, 120 Hz adaptief (1–120 Hz)
Afmetingen gevouwen159.2 × 75.0 × 12.9 mm
Afmetingen open159.2 × 214.1 × 3,9 mm (scherm met simlade) / 4,2 mm (midden van het scherm) / 4,0 mm (scherm met zijknop)
Gewicht309 g
Camera achter – ultragroothoek12 MP, Dual Pixel AF, f/2.2, 1.4 μm, 120°
Camera achter – groothoek200 MP, Quad Pixel AF, OIS, f/1.7, 0.6 μm, 85°, 2x optical quality zoom
Camera achter – tele10 MP, PDAF, OIS, f/2.4, 1.0 μm, 36°, 3x optische zoom, 30x Space Zoom
Selfiecamera coverscherm10 MP, f/2.2, 1.12 μm, 85°
Selfiecamera hoofdscherm10 MP, f/2.2, 1.12 μm, 100°
ChipsetSnapdragon 8 Elite for Galaxy (3 nm)
Geheugen/opslag16 GB RAM | 512 GB of 1 TB opslag
MicroSDNiet ondersteund
Batterij5600 mAh (3-cels)
Bedraad laden45 W, ~50% in 30 min
Draadloos laden15 W Fast Wireless Charging 2.0
Wireless PowerShareJa
WaterbestendigheidIP48
Glas/metaalGorilla Glass Ceramic 2 (voor), keramisch-glas achter, titanium frame
BesturingssysteemAndroid 16 met One UI 8
Netwerk5G, LTE, Wi-Fi 7, Bluetooth 5.4
SensorenVingerafdruk (zijkant), accelerometer, barometer, gyro, geomagnetisch, hall, nabijheid, licht
BeveiligingSamsung Knox & Knox Vault
SIMTot twee nano‑SIM + multi‑eSIM
KleurCrafted Black