ID.nl logo
Alles over de verschillende encryptie-soorten
© Reshift Digital
Huis

Alles over de verschillende encryptie-soorten

Wat is encryptie en hoe werkt het in grote lijnen? In dit artikel kijken we naar de verschillende encryptie-soorten die mogelijk zijn.Belangrijke basiskennis voor elke computergebruiker die zijn communicatie graag privé houdt.

Bij encryptie of versleuteling wordt een boodschap (de ‘plaintext’) op zo’n manier gecodeerd dat alleen iemand met de juiste sleutel de oorspronkelijke boodschap kan decoderen. De versleutelde versie van de boodschap wordt ook wel ‘ciphertext’ genoemd. Wie de ciphertext dus weer in de oorspronkelijke boodschap wil omzetten (dat proces heet ‘decryptie’), heeft de sleutel nodig. De sleutel is in principe een willekeurig getal. In de praktijk maken we gebruik van een wachtwoord en dus wordt het wachtwoord via een ‘key derivation function’ eerst omgezet naar een willekeurig getal dat dan als sleutel dient.

Er bestaan diverse manieren om die versleuteling uit te voeren. Zo’n manier heet een encryptie-algoritme of ‘cipher’. De Nederlandse taalkundige en cryptograaf Auguste Kerckhoffs stelde al in de 19de eeuw een belangrijk ontwerpprincipe op: een encryptie-algoritme moet zelfs veilig zijn als alle details van het systeem publiek bekend zijn, behalve de sleutel. Dit principe van Kerckhoffs is anno 2020 nog altijd even belangrijk voor de veiligheid van een encryptie-algoritme.

Als iemand je dus wil overtuigen om een propriëtair, topgeheim encryptiesysteem te gebruiken, loop er dan maar in een wijde boog omheen. De enige verantwoorde keuzes voor encryptiesystemen zijn algoritmes waarvan de specificatie openbaar is, waarvan de ontwikkeling in open commissies gebeurt en waarvan opensource implementaties bestaan.

Symetrische en asymetrische encryptie

De diverse encryptie-algoritmes zijn in twee groepen onder te verdelen: symmetrische en asymmetrische. Bij die eerste (‘symmetric-key encryption’) gebeuren de encryptie en decryptie met dezelfde sleutel. Een voorbeeld van zo’n algoritme is AES (Advanced Encryption Standard). Bijna alle programma’s die tegenwoordig symmetrische encryptie aanbieden, doen dat met AES. Zo ook BitLocker in Windows, FileVault in macOS en LUKS (Linux Unified Key Setup) in Linux.

Algoritmes voor symmetrische encryptie werken doorgaans snel. Maar dat encryptie en decryptie dezelfde sleutel vereisen, zorgt in heel wat situaties voor praktische problemen. Als je een versleutelde boodschap met iemand wilt uitwisselen, dienen de ontvanger en jij namelijk ook de gebruikte sleutel uit te wisselen. Dat doe je het liefst op een veilige manier, maar de vraag is hoe: met encryptie? Maar hoe zit het dan met de sleutel daarvoor?

Asymmetrische encryptie (met als bekendste algoritme RSA) pakt dit probleem aan door de sleutel voor encryptie en de sleutel voor decryptie los te koppelen. Bij deze vorm van encryptie heb je namelijk niet één sleutel meer voor encryptie én decryptie, maar een sleutelpaar. Twee afzonderlijke sleutels: één voor encryptie en één voor decryptie.

Hoe werkt dat in de praktijk? De encryptiesleutel publiceer je en iedereen mag die zien. Deze sleutel wordt dan ook de publieke sleutel genoemd. De decryptiesleutel houd je zelf bij en je zorgt dat alleen jijzelf deze sleutel kan inzien. Die heet daarom ook de geheime sleutel (‘private key’). Als iemand een boodschap met je publieke sleutel versleutelt, kan alleen jij met de bijbehorende geheime sleutel de boodschap decrypteren.

©PXimport

Digitale handtekening

Als je de twee sleutels omdraait, krijg je iets heel anders: een digitale handtekening. Je zendt dan een boodschap (onversleuteld) aan iemand anders en zendt ook diezelfde boodschap mee, versleuteld met je eigen geheime sleutel.

De ontvanger kan met jouw publieke sleutel, die immers gewoon bekend is, de versleutelde boodschap decrypteren. Als er niets met de boodschap gebeurd is, zou die ontsleutelde boodschap exact moeten overeenkomen met de boodschap die je samen met de digitale handtekening hebt verzonden.

Het resultaat? De digitale handtekening garandeert twee zaken: authenticatie van de zender en integriteit van de boodschap. Jij bent namelijk de enige met toegang tot je geheime sleutel. Als de ontvanger met je bijbehorende publieke sleutel je digitale handtekening kan ontsleutelen, weet die dan ook zeker dat jij die digitale handtekening hebt aangemaakt. En omdat de ontsleutelde digitale handtekening exact overeenkomt met de boodschap die je stuurde, weet hij ook zeker dat niemand die boodschap tussen de zender en ontvanger heeft veranderd.

Hashwaarde

In de praktijk wordt die digitale handtekening niet berekend op de boodschap zelf, want dan zou elke boodschap dubbel zo groot worden: de boodschap zelf en een versleutelde versie daarvan. Daarom wordt een hashwaarde van de boodschap berekend.

Een hashwaarde is een getal van een vaste lengte, dat afhangt van een boodschap van willekeurige lengte. Een eigenschap van een hashwaarde is dat als de boodschap verandert, de hashwaarde ervan ook verandert. Als je de hashwaarde van twee boodschappen vergelijkt en die identiek zijn, ben je zo goed als zeker dat ook die boodschappen zelf identiek zijn, zonder dat je de inhoud van die boodschappen hoeft te kennen.

Een digitale handtekening maak je in de praktijk dan ook door een hashwaarde van je boodschap te berekenen, die hashwaarde te versleutelen met je geheime sleutel en het resultaat (een kort getal) mee te sturen met je boodschap. De ontvanger hoeft je digitale handtekening maar te ontsleutelen met je publieke sleutel en de resulterende hashwaarde te vergelijken met de hashwaarde van je boodschap, die hij eenvoudig kan berekenen.

©PXimport

Encryptie en handtekening tegelijk

Dit alles kun je nu ook nog combineren: je versleutelt je boodschap met de publieke sleutel van de ontvanger, berekent een hashwaarde van de (onversleutelde) boodschap en versleutelt die met je eigen geheime sleutel. De versleutelde boodschap stuur je samen met de digitale handtekening naar de ontvanger. Die ontsleutelt de boodschap met zijn geheime sleutel en ontsleutelt de digitale handtekening met jouw publieke sleutel. Hij berekent de hashwaarde van je ontsleutelde boodschap en vergelijkt die met de ontsleutelde digitale handtekening.

Op die manier heb je een boodschap naar de ontvanger gestuurd die niemand anders kan lezen en de ontvanger weet zeker dat jij de boodschap gestuurd hebt en dat er onderweg niets aan de boodschap veranderd is. Dat is de kracht van asymmetrische encryptie!

▼ Volgende artikel
Nieuwe FromSoftware-game The Duskbloods komt echt alleen naar Switch 2
Huis

Nieuwe FromSoftware-game The Duskbloods komt echt alleen naar Switch 2

The Duskbloods, de nieuwe game van Elden Ring- en Dark Souls-ontwikkelaar FromSoftware, zal echt alleen op Nintendo Switch 2 uitkomen.

Dat heeft de ontwikkelaar benadrukt bij het bekendmaken van zijn kwartaalcijfers (via VGC). Daarbij werd ook nog eens benadrukt dat The Duskbloods nog altijd gepland staat om ergens dit jaar uit te komen, net zoals de Switch 2-versie van Elden Ring.

Over de exclusieve Switch 2-release van The Duskbloods: "Het wordt verkocht via een samenwerking met Nintendo, met verkoopverantwoordelijkheden verdeeld per regio. De game komt alleen voor Nintendo Switch 2 beschikbaar." Daarmee is dus duidelijk gemaakt dat Nintendo een nauwe samenwerking met FromSoftware is aangegaan voor de game en dat het spel niet zomaar op andere platforms uit zal komen.

Over The Duskbloods

The Duskbloods werd begin vorig jaar aangekondigd in een speciale Nintendo Direct waarin de eerste Switch 2-games werden getoond, maar sindsdien zijn er geen nieuwe beelden van het spel uitgebracht. Zoals gezegd is de game ontwikkeld door FromSoftware, het Japanse bedrijf dat naam voor zichzelf heeft gemaakt met enorm uitdagende spellen, waaronder de Dark Souls-serie en Bloodborne. Met de openwereldgame Elden Ring scoorde de ontwikkelaar enkele jaren geleden nog een megahit.

Watch on YouTube

The Duskbloods wordt een PvPvE-game, waarbij spelers het dus tegen elkaar en tegen computergestuurde vijanden opnemen. Maximaal acht spelers doen aan potjes mee. Na het kiezen van een personage in een hub-gebied wordt men naar een gebied getransporteerd waar er met andere spelers en vijanden gevochten wordt, al kan men soms ook samenwerken om vijanden te verslaan.

Spelers besturen een 'Bloodsworn', wezens die dankzij een speciaal bloed dat in hun lichaam zit meer krachten tot hun beschikking hebben dan reguliere mensen. Ondertussen is het einde van de mensheid nabij, en bestaat de wereld uit verschillende tijdperken, wat voor een mengelmoes van stijlen zorgt.

▼ Volgende artikel
Beeldverversing versus pixels: waarom soepel gamen beter is dan scherp
© Gorodenkoff Productions OU
Huis

Beeldverversing versus pixels: waarom soepel gamen beter is dan scherp

Resolutie is marketing, refreshrate is beleving. Waar 4K zorgt voor een mooi plaatje, zorgt een hoge verversing (Hz) ervoor dat je daadwerkelijk wint. Hieronder lees je waarom snelheid in feite de échte koning is in gaming.

Veel gamers staren zich blind op 4K-resolutie. Ze kopen een duur scherm, zetten de settings op Ultra en vragen zich vervolgens af waarom hun spel stroperig aanvoelt. De misvatting is dat 'mooier' gelijkstaat aan 'beter'. In werkelijkheid is de vloeibaarheid van het beeld – de refreshrate, oftewel verversingssnelheid – veel bepalender voor hoe direct en responsief een game aanvoelt. Aan het eind van dit artikel weet je precies of jij moet kiezen voor pixels of snelheid.

Hoe je ogen bedrogen worden door Hertz

Stel je voor dat je snel met je muis over je bureaublad beweegt. Op een standaard 60Hz-scherm zie je de cursor in schokjes over het beeld springen; je hersenen vullen de gaten in. Op een 144Hz- of 240Hz-gaming-monitor verdwijnen die gaten.

Het technische verschil zit hem in de verversingssnelheid: het aantal keren per seconde dat het beeld wordt vernieuwd. Bij 60 Hz krijg je elke 16,6 milliseconden een nieuw beeld. Bij 144 Hz is dat elke 6,9 milliseconden. Dat klinkt als een klein verschil, maar je voelt het direct. Het gestotter dat je onbewust gewend bent verdwijnt. Bewegingen voelen boterzacht aan, alsof de cursor (of je crosshair) aan je hand vastgeplakt zit in plaats van er achteraan zwemt. Dit effect wordt motion clarity genoemd: objecten blijven scherp, zelfs als ze snel door het beeld bewegen.

©Framestock

De winst in shooters en snelle actie

Wanneer werkt dit in je voordeel? Vooral in competitieve shooters zoals Call of Duty, Counter-Strike of Valorant. In dit soort games telt elke milliseconde. Een hogere refreshrate vermindert de input lag, oftewel de tijd tussen jouw klik en de actie op het scherm.

Stel, je draait je personage snel om. Bij een lage refreshrate wordt de vijand een fractie later getoond en zie je veel bewegingsonscherpte (motion blur). Met een hoge refreshrate zie je de vijand eerder en scherper, waardoor je sneller kunt reageren. Je hebt letterlijk actuelere informatie dan je tegenstander. Om dat te bereiken heb je wel een krachtige videokaart nodig die genoeg beelden per seconde (FPS) kan genereren om je snelle scherm bij te houden.

Wanneer resolutie het toch wint van snelheid

Is snelheid altijd heilig? Nee. Als je vooral tragere, meer verhalende games speelt (zoals Cyberpunk 2077 in de 'sightseeing' modus), Microsoft Flight Simulator of grafische RPG's, dan voegt 240 Hz weinig toe. In deze titels kijk je vaak naar stilstaande of langzaam bewegende omgevingen.

In dat geval wil je juist de texturen van de bomen, de reflecties in het water en de details in gezichten zien. Een 4K-monitor op 60 of 120 Hz is dan een logischer keuze dan een onscherp 1080p-scherm op 360 Hz. De visuele pracht weegt hier zwaarder dan de milliseconden reactietijd. Ook voor console-gamers die op de bank zitten, is een goede televisie met 4K en HDR vaak indrukwekkender dan puur de hoogste framerates.

Situaties waarin een hoge refreshrate zinloos is

Er zijn momenten dat investeren in een snel scherm weggegooid geld is. Dat gebeurt bijvoorbeeld als je hardware de snelheid niet kan leveren; als je videokaart maar 50 frames per seconde kan leveren, heeft een 144Hz-scherm geen nut omdat het scherm wacht op de computer. Daarnaast beperken oude kabels je bandbreedte, waardoor je monitor soms terugvalt naar 60 Hz zonder dat je het doorhebt. Ook op oudere consoles zoals de Nintendo Switch of de standaard PS4 heb je niets aan snelle schermen, omdat deze hardware fysiek gelimiteerd is op 60 Hz of lager.

Bepaal wat jouw setup aankan

Kijk dus kritisch naar je huidige situatie voordat je naar de winkel rent. Heb je een high-end pc die makkelijk 120+ FPS haalt in jouw favoriete games? Dan is een upgrade naar een 144- of 165Hz-monitor de grootste sprong in spelplezier die je kunt maken. Speel je op een PlayStation 5 of Xbox Series X? Zoek dan specifiek naar een scherm met HDMI 2.1-ondersteuning om 120 Hz op 4K mogelijk te maken. Zit je ver van je scherm af en speel je relaxed? Investeer dan liever in resolutie en kleurdiepte.

©Proxima Studio

Kortom: snelheid is de sleutel tot succes!

Verversingssnelheid is belangrijker dan resolutie voor iedereen die actie- of competitieve games speelt. Het zorgt voor een vloeiender beeld, minder input lag en betere motion clarity, wat je direct een voordeel geeft in het spel. Resolutie is vooral luxe voor het oog, maar refreshrate is pure prestatie voor de speler.