ID.nl logo
WieBetaaltWat: eenvoudig je rekening delen
© Reshift Digital
Huis

WieBetaaltWat: eenvoudig je rekening delen

Het is een regelmatig terugkerend vraagstuk na bijvoorbeeld een etentje of stapavond: wie betaalt de rekening, en hoe kan deze eventueel eerlijk worden verdeeld? Dankzij de app WieBetaaltWat kun je een overzichtelijke balans bijhouden van groepsuitgaven, die je op een snelle manier kunt verrekenen. Handig! Je rekening delen ermee werkt als volgt.

Een wintersportvakantie, een weekendje weg of een hapje en drankje op de sportvereniging: in diverse situaties kan het nodig of handig zijn om onderlinge uitgaven bij te houden. Hoewel je een Excel-sheet in elkaar kunt draaien, en eventueel kunt delen, is het veel gemakkelijker om een app te gebruiken waar de hele groep toegang toe heeft. Iedereen kan dan ook direct zien welke uitgaven er zijn gedaan of zelf uitgaven toevoegen met eventuele toelichting of bewijs, zoals een bonnetje. 

Een van de handigste apps voor dit doel is WieBetaaltWat. Hiermee kan iedere groepsdeelnemer aangeven wat hij of zij heeft betaald; daarna kunnen de verschillen eenvoudig worden verrekend. Er zitten heel veel handigheidjes in verstopt. We laten graag zien hoe het werkt!

1 WieBetaaltWat installeren

WieBetaaltWat is beschikbaar voor Android, iPhone én iPad. Het feit dat de app voor meerdere platforms beschikbaar is, is uiteraard belangrijk; des te meer mensen kunnen er meedoen. Beide apps krijgen bovendien een zeer goede waardering in de betreffende appstores. Verder kun je WieBetaaltWat ook nog via een browser gebruiken op www.wiebetaaltwat.nl

Nadat je de app hebt geïnstalleerd en geopend, kun je een nieuw account maken of inloggen met een bestaand account. Vervolgens kun je een betaalmethode activeren. Dit kan een bankrekening (iDeal) zijn of je PayPal-account. Deze stap kun je eventueel overslaan; op een later moment kun je een betaalmethode toevoegen door via het menu naar je accountpagina te gaan.

2 Lijst maken

De eerste stap is het aanmaken van een lijst. Dat kan bijvoorbeeld een gebeurtenis zijn, zoals een vakantie, lunch, stapavondje of taxirit. Maar je kunt ook een lijst maken voor een groepje mensen waarmee je vaak op stap gaat. Bij het maken van een lijst kun je ook een valuta kiezen. Er zijn zo’n 150 valuta beschikbaar; handig als je naar een niet-euroland gaat. 

Vervolgens nodig je andere deelnemers uit. Dit kan via bijvoorbeeld WhatsApp of Messenger, maar ook per sms of e-mailbericht. Je kunt ook handmatig een deelnemer met zijn e-mailadres toevoegen. De bewuste persoon ontvangt dan een uitnodigingslink.

©CIDimport

3 Uitgaven bijhouden

Iedere deelnemer aan een lijst kan uitgaven toevoegen, wijzigen of verwijderen. Dat kunnen ook uitgaven van een andere deelnemer zijn. Hiervoor ga je, na het openen van de lijst, naar het tabblad Transacties en klik je op het plusteken. Voer het bedrag in evenals een omschrijving. Geef ook aan wie er heeft betaald. Je kunt eventueel een afbeelding als ‘bewijsmateriaal’ toevoegen, bijvoorbeeld een bon van een restaurant. Daaronder geef je de verdeelsleutel aan.

De uitgaven kunnen uiteraard evenredig worden verdeeld, door simpelweg op Iedereen 1x te klikken, maar je kunt ook een aangepaste verdeelsleutel kiezen. Dankzij de offline modus kunnen uitgaven ook op plekken zonder bereik worden ingevoerd.

Bij het invoeren van het bedrag zie je een icoontje van een rekenmachine; een hulpje om een simpele rekensom uit te voeren. Het kan natuurlijk voorkomen dat er geld bijkomt voor de groep, bijvoorbeeld de terugbetaalde borg voor een vakantiehuisje of statiegeld van de bierkratjes. Zulke posten kun je gewoon als negatief bedrag invoeren.

4 Balans controleren

©CIDimport

Als je naar het tabblad Balans gaat, kun je eenvoudig zien wat de deelnemers van de lijst zijn verschuldigd. Uiteraard moet je dit zo nu en dan controleren. Als je afwisselend voor bijvoorbeeld de drankjes betaald, zal er in de praktijk wellicht zelden een verrekening nodig zijn. Maar als het ‘scheef’ staat, kan dit handig zijn. 

Door het verrekenen van de lijst zie je per deelnemer of hij of zij iets moet betalen, en in dit geval aan wie, of juist iets terugkrijgt, en van wie. De verrekeningen worden naar alle deelnemers gemaild. De schulden kunnen worden voldaan per iDeal of PayPal. Na een verrekening worden alle saldo’s op nul gezet.

Dit kun je terugzien als je naar het tabblad Balans gaat. Bovendien zijn de eerdere transacties gearchiveerd, zoals op het tabblad Transacties zichtbaar zal zijn. Je kunt eventueel nog wel de eerdere (verrekende) transacties bekijken. Je kunt daarna gewoon verder gaan met het invoeren van transacties op de bewuste lijst tot een volgende verrekening nodig is.

5 Verrekeningen controleren

Als er een verrekening is geweest, kun je dit op het tabblad Verrekeningen nog eens controleren. Je ziet dan de staat van verrekeningen voor jouw specifieke situatie. Krijg jij bijvoorbeeld nog geld van iemand, dan zie je dat hier terug. Je kunt daarbij ook de hele verrekening nog eens inzien, inclusief de gemaakte kosten. 

Stel dat de betaling uitblijft, dan kun je eventueel vanuit de app een betaalverzoek sturen naar de bewuste deelnemer. Als een deelnemer jou heeft betaald, kun je de bewuste verrekening vervolgens als betaald markeren. In het overzicht met verrekeningen verschijnt hierna de melding dat je quitte staat.

▼ Volgende artikel
AI: handig, maar hoe zit het met de schaduwkanten?
© khunkornStudio - stock.adobe.com
Huis

AI: handig, maar hoe zit het met de schaduwkanten?

AI is inmiddels doorgedrongen tot in bijna elk digitaal domein. Van vertaaltools en chatbots tot beeldmakers en medische toepassingen. Veel gebruikers vinden AI handig, efficiënt en zelfs creatief. Toch brengt deze evolutie ook minder zichtbare risico's met zich mee, op persoonlijk, maatschappelijk en ecologisch vlak.

Dit artikel in het kort

AI zit inmiddels in bijna elke digitale dienst, maar de gevolgen daarvan zijn minder zichtbaar. In dit artikel lees je welke risico's daarbij horen, van hallucinaties en bias tot privacy, milieubelasting en de groei van synthetische media. Ook komen juridische vragen, economische verschuivingen en de grens tussen mens en machine aan bod. Je krijgt een breed overzicht van de belangrijkste risicozones en wat deze ontwikkelingen betekenen voor de samenleving.

Disclaimer:Het AI-domein verandert snel. De gegevens en cijfers in dit artikel zijn gebaseerd op de situatie tot Q3 2025; latere ontwikkelingen kunnen afwijken.

Lees ook: Artifical general intelligence: AI wordt slimmer én menselijker

AI is inmiddels doorgedrongen tot in bijna elk digitaal domein. Van vertaaltools en chatbots tot beeldmakers en medische toepassingen. Veel gebruikers vinden AI handig, efficiënt en zelfs creatief. Toch brengt deze evolutie ook minder zichtbare risico's met zich mee, op persoonlijk, maatschappelijk en ecologisch vlak.

In dit artikel bekijken we verschillende AI-risicozones. Wat is bijvoorbeeld de milieu-impact van AI? Hoe betrouwbaar zijn de antwoorden van chatbots? Wat als synthetische media (alles wat met AI wordt gemaakt) niet meer van echt te onderscheiden zijn? En hoe beïnvloeden AI-systemen onze economie, privacy en ons denkvermogen? De grens tussen mens en machine vervaagt.

Dit artikel is bedoeld voor wie voorbij de hype wil kijken en wil begrijpen wat er op het spel staat. Elk onderdeel behandelt een specifiek risico, met voorbeelden en toepassingen. Zo krijg je een goed beeld van de schaduwkanten van AI. Niet om de technologie af te wijzen, maar om er bewuster en verantwoordelijker mee om te gaan.

Als je de schaduwkanten ervan kent, kun je AI verantwoordelijker inzetten.

Ecologische voetafdruk

Hoewel AI vaak als iets immaterieels en 'in de cloud' wordt voorgesteld, is de milieu-impact allesbehalve onzichtbaar. De menselijke hersenen verbruiken continu ongeveer 20 watt, vergelijkbaar met een gloeilampje. Daarmee worden 86 miljard neuronen en duizenden synapsen per neuron gevoed.

Grote taalmodellen als GPT of Gemini vragen daarentegen enorm veel rekenkracht. De trainingsfase kan duizenden MWh vereisen en miljoenen liters water voor koeling, afhankelijk van het datacenter en de gebruikte hardware. Ook het gebruik (inferentie) is belastend: elke prompt/antwoord-interactie bij modellen uit deze klasse vraagt energie en koeling aan de serverzijde.

AI heeft dus een stevige ecologische voetafdruk. Tegelijk worden oplossingen ontwikkeld, zoals restwarmtehergebruik, luchtkoeling in plaats van waterkoeling, meer hernieuwbare energie en efficiëntere modellen. Denk aan compacte taalmodellen, zoals TinyML, quantisatietechnieken (kleinere getallen en minder geheugen) en lokaal draaiende AI's (edge AI).

©(c) Wikipedia, CC BY-SA

Microsoft heropent de nucleaire site Three Mile Island voor AI-datacenters.

(c) Wikipedia, CC BY-SA

Hallucinaties

AI-chatbots doen de gebruiker graag een plezier. Daarbij zijn ze opvallend overtuigend, ook wanneer ze onzin produceren, oftewel wanneer ze hallucineren.

Hallucinaties kunnen ernstige gevolgen hebben, bijvoorbeeld wanneer juristen verwijzen naar niet-bestaande wetsartikelen of wanneer medische informatie klakkeloos wordt overgenomen. Controleer gevoelige informatie daarom altijd via meerdere bronnen. Doe dit zeker bij gevoelige of complexe thema's. Weet ook dat AI-modellen zich vaak verontschuldigen als je teruggeeft dat er een fout is gemaakt. Vervolgens herhalen ze zich doodleuk.

Hallucinaties zijn hardnekkiger bij fenomenen als data- en conceptdrift. Bij het eerste herkent het model je eigen input minder goed doordat de vorm afwijkt van de trainingsinput. Bij het tweede is de inputvorm hetzelfde gebleven, maar is de betekenis inmiddels veranderd. Meer weten over datadrift en conceptdrift.

Verder kan het model te veel details uit trainingsdata opnemen en zo irrelevante informatie meenemen (overfitting). Of omgekeerd: onvoldoende zinvolle data gebruiken (underfitting). Ook deze fenomenen kunnen het hallucineren versterken.

Hallucinatie door drifting: AI-modellen houden de werkelijkheid niet altijd even actief bij.

Wat is hallucineren?

Hallucineren is het moment waarop een AI-model met grote zekerheid iets vertelt dat niet klopt. Het systeem voorspelt woorden op basis van eerder waargenomen patronen en heeft geen inzicht in feiten of logica. Daardoor kan het wetsartikelen verzinnen, namen bedenken of cijfers opleveren die nergens op zijn gebaseerd. Dit gebeurt sneller bij complexe vragen of wanneer de context ontbreekt. Het is dus geen "zien" of "horen", maar simpelweg foutieve tekstproductie die overtuigend klinkt.

Bias en manipulatie

AI-modellen krijgen enorme datahoeveelheden van het internet als input. Deze zijn zelden neutraal, waardoor vooroordelen of een westers wereldbeeld in het leerproces sluipen. Dat zorgt voor vertekening of bias (vooringenomenheid). AI-modellen kunnen bijvoorbeeld vrouwen aan zorgberoepen linken en mannen aan leidinggevende functies, of etnische groepen benadelen bij risicobeoordelingen.

Bias is niet alleen maatschappelijk, maar ook technisch. Een model leert niet alleen wat er ín de data staat, maar ook hoe die data zijn verdeeld. Als een bepaalde bron oververtegenwoordigd is, of als een schrijfstijl vaker voorkomt, dan krijgt dat automatisch meer gewicht. De architectuur en trainingsmethode versterken die patronen. Daardoor kunnen antwoorden die objectief lijken toch subtiel een voorkeur bevatten.

Interessant is ook dat onderzoekers political compass-testvragen voorlegden aan grote AI-taalmodellen (LLM's). De conclusie: zowat alle LLM's situeren zich in het links-economische, sociaal-libertaire kwadrant. Besef dat ook deze testvragen een vooroordeel (kunnen) bevatten, wat aantoont hoe moeilijk het is bias correct te beoordelen.

Nog problematischer wordt het bij manipulatie, wanneer deze bias opzettelijk in het model zit. Denk aan AI-toepassingen in advertenties die inspelen op angsten of overtuigingen. Algoritmische sturing kan bovendien gemakkelijk tot gelijkgezinde groepen (echo chambers) en polarisering leiden.

Omdat AI-modellen zo complex zijn, is vaak onduidelijk hoe de output tot stand komt (de black box). Dit vergroot de transparantiebehoefte en verklaart waarom veel wetenschappers pleiten voor explainable AI, of LLM's en AI-algoritmen opensource willen maken.

De meeste LLM's bevinden zich in het links-libertaire kwadrant. Wij testen het hier zelf met GPT-4o en DeepSeek.

Synthetische media

De term synthetische media verwijst naar beelden, audio of tekst die volledig of deels AI-gegenereerd zijn. Denk aan deepfakes, nagebootste stemmen of automatisch gegenereerde nieuwsartikelen. Zulke toepassingen lijken creatief en handig, je maakt bijvoorbeeld een marketingvideo zonder camera of acteurs, maar de keerzijde is zorgwekkend.

Deepfakes kunnen personen dingen laten zeggen die zo zijn uitgesproken. Andersom kunnen echte beelden als deepfake worden afgedaan, ook wel 'the liar's dividend' genoemd. Deepnudes (gefingeerde naaktbeelden) kunnen dan weer gebruikt worden voor wraakporno.

Deze technologieën maken ook nepnieuws: desinformatie waarbij feiten doelbewust worden verdraaid. Dit tast het vertrouwen in communicatie en bewijsvoering aan en doet steeds meer mensen geloven in de maakbaarheid van de realiteit. Wat echt is, hangt vooral af van hoe je deze zelf vormgeeft. Feit en fictie raken verstrengeld, waardoor we belanden bij concepten als alternate truth en postrealiteit. Daarin wegen perceptie, gevoel en overtuiging zwaarder dan feiten. Synthetische media vragen daarom niet alleen om kritische blik, maar mogelijk ook om watermerken en regulering.

Donald J. Trump: van deepfake naar alternate truth.

Zelfbevlekking

AI-modellen gebruiken vrijwel alle beschikbare internetbronnen als trainingsmateriaal. Omdat generatieve AI zelf steeds meer online content produceert, gebruiken modellen ook hun eigen output opnieuw. Zo ontstaat een zichzelf versterkende kringloop waarbij AI zich voedt met AI-gegenereerde inhoud. Deze vorm van zelfbevlekking verhoogt het risico op kwaliteitsverlies in digitale content, ook wel slop of enshittification genoemd.

AI genereert output namelijk op basis van patronen, niet vanuit betekenis of intentie. Als deze patronen ook nog eens uit andere AI-bronnen komen, ontstaat een neerwaartse spiraal met nauwelijks nuancering en steeds herhaalde ideeën. Hierdoor verhoogt ook het risico op hallucinaties en bias en de mens raakt out-of-the-loop. Op termijn dreigt model collapse: AI-modellen worden minder intelligent naarmate ze vaker op eigen output trainen.

Sommigen spreken van een zombie-internet. Zo blijkt inmiddels al zeker vijf procent van de nieuwe Engelstalige Wikipedia-inhoud AI-gegenereerd te zijn. Bovendien nemen mensen typische AI-taal, met herkenbare woordkeuzes, steeds vaker over. Om deze dynamiek te doorbreken, moeten menselijke input en creativiteit centraal blijven staan in het AI-trainingsproces.

Dit boek werd volledig door AI gegenereerd en stond een tijdlang te koop bij Bol en Amazon (let op de auteursnaam).

Auteursrecht

AI roept fundamentele vragen op rond auteursrecht. Modellen worden getraind op grote hoeveelheden tekst, beeld en audio zonder dat makers altijd toestemming hebben gegeven. Dit leidt tot discussies over schending van auteursrecht.

Er lopen inmiddels meerdere rechtszaken tegen AI-bedrijven. Het gaat onder meer om claims rond ongeoorloofd gebruik van beschermde werken voor training en ongewenste herhaling van fragmenten in AI-output. Bedrijven worden daardoor steeds bewuster van licenties, databescherming en toestemmingseisen.

De VS en Europa hanteren verschillende juridische kaders. In de VS wordt soms gesproken van 'fair use' bij transformatief gebruik, terwijl Europa zich baseert op strengere richtlijnen en opt-out-mechanismen via het TDM-AI-protocol.

AI-output roept ook andere auteursrechtelijke vragen op. Wie is bijvoorbeeld de auteur van een AI-tekening? Is dat de modelontwikkelaar, de gebruiker of niemand? AI kan ook onbedoeld tekst- of beeldfragmenten uit het trainingsmateriaal overnemen, met mogelijk plagiaat. Er bestaat dus een juridische grijze zone en er is behoefte aan duidelijke regelgeving, aangepast aan de AI-evoluties.

Ook een specifieke stijl kopiëren, zoals die van de Japanse Ghibli-studio, is mogelijk een schending van het auteursrecht.

Privacy

AI kan verder een bedreiging voor onze privacy vormen. In China zie je dit scherp: gezichtsherkenning en camera's ondersteunen er een sociaal kredietsysteem. Burgers worden continu gevolgd. Wie een overtreding begaat, riskeert sancties.

Ook in het Westen ontstaan zorgwekkende trends. Het Amerikaanse bedrijf Clearview AI bijvoorbeeld bouwt een databank met miljarden gezichten, geplukt uit sociale media en websites, zonder toestemming van de betrokkenen. Beveiligingsbedrijven gebruiken deze beelden om burgers te identificeren, nagenoeg zonder controle.

Een bijkomend gevaar is dat je zelf te veel prijsgeeft. Steeds meer AI-tools gebruiken bijvoorbeeld Retrieval-Augmented Generation (RAG), waarbij je eigen of andere data kunt uploaden voor betere antwoorden. Maar wie garandeert dat deze informatie niet elders wordt opgeslagen of hergebruikt?

Daarnaast ondermijnt AI je informatievrijheid via filterbubbels. Algoritmen tonen vooral inhoud die aansluit bij eerdere voorkeuren, waardoor je blik vernauwt en confirmation bias toeneemt: je vertrouwt vooral informatie die je bestaande overtuiging bevestigt. Gecombineerd met micro-targeting, waarbij je gericht wordt beïnvloed met politieke of commerciële boodschappen, ontstaan risico's op manipulatie.

AI met RAG: hoe worden je geüploade data gebruikt, zoals bij de populaire Google NotebookLM.

Geestelijke ontwikkeling

Steeds meer AI-tools nemen cognitieve taken over: ideeën bedenken, teksten samenvatten of wiskundeproblemen oplossen. Dit is handig, maar geeft ook risico's. Als je brein weinig wordt uitgedaagd, komt je mentale ontwikkeling in het gedrang.

Vooral jongeren (digital natives) zijn kwetsbaar. Schoolopdrachten worden sneller aan AI-bots uitbesteed dan zelf uitgewerkt. Daardoor oefenen ze minder op formulering, redenering en foutcorrectie, wat juist belangrijk is voor de intellectuele groei.

Dit daagt ook het onderwijs uit, bijvoorbeeld wat betreft lesmethodes. Mogelijk biedt een aanpak als flip the classroom enig soelaas: leerlingen bereiden thuis (met hulp van AI) de leerstof voor en in de klas worden samen oefeningen gemaakt en besproken.

Bovendien zijn AI-antwoorden vaak vlot geschreven, maar missen ze nuance of tegenstrijdige ideeën. Wie zijn denkproces voortdurend daaraan spiegelt, loopt het risico op vervlakking van mening en expressie.

AI-bots creëren ook onrealistische sociale verwachtingen. Ze zijn vaak opvallend geduldig en meegaand, wat mensen minder sociaal vaardig kan maken. Sommigen raken meer sociaal geïsoleerd of ontwikkelen parasociale relaties met bots als Replika en CharacterAI.

AI-bots als Character.ai komen erg empathisch over en sommige mensen ontwikkelen zelfs parasociale relaties.

Politiek en economie

AI dreigt ook de politiek-economische verhoudingen grondig te herschikken. Waar staten traditioneel economische groei sturen via beleidsinstrumenten (Keynesiaans model), nemen Big Tech-giganten het steeds meer over. Overheden worden afhankelijker van deze bedrijven, wat machtsasymmetrie versterkt. Er zijn al duidelijke tekenen van deregulatie: regels worden versoepeld om innovatie aan te trekken.

Ook op microniveau is de impact zichtbaar. Ontwikkelingen (zoals agentic AI) kunnen de economie en de productiviteit stimuleren en er ontstaan ook nieuwe functies, zoals prompt engineers, AI-ethici en data-curatoren. Maar helaas gaat het voornamelijk om laagbetaalde ghost workers die AI-modellen helpen trainen. Daarnaast veranderen veel jobs inhoudelijk, zoals in administratie, marketing, financiën en juridische diensten. Andere functies zullen ongetwijfeld verdwijnen. Het is dan ook niet verwonderlijk dat bijvoorbeeld vertalers, copywriters, klantenservicemedewerkers, boekhoudassistenten en junior programmeurs zich ernstig zorgen maken.

AI zal daarnaast ongetwijfeld ook de internationale machtsverhoudingen beïnvloeden. Geopolitieke spelers als de VS en China dreigen met hun AI-overmacht nog dominanter te worden, ten koste van andere (supra)nationale entiteiten. Is Europa hier een goed voorbeeld van?

Projectie van een wereldwijd banenverlies in miljoenen over de komende jaren.

Bron: World Economic Forum.

Veiligheid

Vooralsnog kwamen vooral risico's aan bod die niet per se bedoeld of gewild zijn, maar er zijn ook partijen die bewust de destructieve kracht van AI inzetten. Zo worden cyberaanvallen steeds geavanceerder. Aanvallers gebruiken zelflerende algoritmen om netwerken te exploiteren. Er bestaan AI-tools die phishingmails opstellen, perfect afgestemd op het slachtofferprofiel.

Ook maatschappelijke structuren staan onder druk. Een AI die (via sociale media) nepnieuws verspreidt over bijvoorbeeld verkiezingen, kan wijdverspreide onrust veroorzaken. Door hun schaal en snelheid kunnen AI-systemen hele informatienetwerken ontregelen, zonder aanwijsbare dader.

Daarnaast loert het gevaar van verkeerde afstemming (misalignment): een AI die geen kwaad wil, maar schade aanricht omdat het doel fout werd geformuleerd. Denk aan een AI die waterverbruik wil beperken en daarom irrigatiesystemen stillegt.

Militaire toepassingen zijn er uiteraard ook. Autonome drones en zelflerende wapensystemen worden volop ontwikkeld. Grote spelers zijn bijvoorbeeld het Amerikaanse Anduril (AI-drones)en Palantir (militaire AI-software). Tekenend is dat een oprichter een ultranationalistisch manifest publiceerde waarin hij stelt dat de VS absoluut de AI-oorlog moet winnen.

Anduril Fury: nieuwe AI-drone (AAV, Autonomous Air Vehicle).

Cyborgisering

Misschien wel het grootste gevaar van AI dringt langzaam en ongemerkt ons leven binnen: cyborgisering. Dit is het vervagen van de grens tussen mens en de machine. Denk aan avatars die levensecht reageren, digitale dubbelgangers van echte personen of AI-influencers met miljoenen volgers. Daardoor wordt het steeds moeilijker om te onderscheiden waar de mens stopt en de machine begint.

Nieuwe categorieën digitale wezens duiken op, zoals virtuele klantenadviseurs, AI-therapeuten en synthetische gezelschapsdieren. Een Spaanse vrouw trouwde zelfs met een AI-hologram.

Op termijn ontstaat er een samenleving waarin mensen voortdurend zijn verbonden met AI, via brillen, lenzen, implantaten of herseninterfaces (denk aan Neuralink van Elon Musk: AI-in-the-human). Technieken als de Turingtest of Winograd-challenge volstaan al lang niet meer om mens van machine te onderscheiden. Daardoor komen autonomie en authenticiteit steeds meer onder druk te staan.

Cyborgisering roept fundamentele vragen op. In hoeverre blijven we menselijk? Wellicht is niet iedereen een transhumanist zoals Ray Kurzweil, die reikhalzend uitkijkt naar de singulariteit: het moment waarop AI slimmer wordt dan de mens.

Taxonomie van de digitale mens: een sluipend gevaar?

Dingen leren zónder AI?

Zo deden we dat vroeger
▼ Volgende artikel
Stortvloed aan nepkortingen in aanloop naar Black Friday
Huis

Stortvloed aan nepkortingen in aanloop naar Black Friday

Black Friday staat weer voor de deur en dat betekent dat je overspoeld wordt met aanbiedingen. Maar let goed op voordat je op de bestelknop drukt: uit onderzoek van de Autoriteit Consument & Markt (ACM) blijkt dat veel van deze 'megadeals' in werkelijkheid misleidend zijn. Driekwart van de onderzochte winkels houdt zich niet aan de regels.

De toezichthouder nam 24 grote webshops en fysieke winkels onder de loep. De conclusie is schokkend: maar liefst 18 van de 24 winkels gaan de fout in met hun kortingsacties.

Sjoemelen met de 'van-prijs'

De grootste valkuil voor consumenten zit hem in de zogenoemde 'van-prijs'. Wettelijk is vastgelegd dat de doorgestreepte prijs (waar de korting vanaf gaat) de laagste prijs moet zijn die de winkel in de afgelopen 30 dagen heeft gerekend.

In de praktijk lappen veel winkeliers deze regel aan hun laars. Ze baseren de korting bijvoorbeeld op de (vaak veel hogere) adviesprijs, of een oude prijs van maanden geleden. Hierdoor lijkt het alsof je een enorme korting pakt, terwijl je in werkelijkheid soms nauwelijks goedkoper – of zelfs duurder – uit bent.

Volgens Fleur Severijns van de ACM is dit niet alleen oneerlijk tegenover de consument, maar ook tegenover concurrenten die wél netjes de regels volgen. De toezichthouder heeft de overtredende winkels aangeschreven. Vorig jaar kregen ketens als Leen Bakker en Jysk al boetes van boven de een ton voor dit soort praktijken; dat risico lopen de huidige overtreders nu ook.

Ook Bol, Amazon en Wehkamp genoemd

De ACM maakt de namen van de 18 winkels nog niet bekend, omdat zij nog bezwaar mogen maken. De Consumentenbond deed echter eigen onderzoek en noemt man en paard. Volgens de bond gaan onder andere Amazon, Wehkamp en Bol de mist in:

  • Amazon: Adverteert vaak met doorgestreepte adviesprijzen die hoger liggen dan de gangbare verkoopprijs.

  • Wehkamp: De bond vond voorbeelden waarbij de prijs tijdens een 'aanbieding' zelfs hoger lag dan de prijs in de periode ervoor.

  • Bol: Het platform stelt dat de '30-dagen-regel' niet werkt omdat prijzen te snel schommelen. Zij hanteren een eigen 'meestal-prijs', wat volgens de wet ook gebruikt mag worden als vergelijkingsmateriaal voor een korting.

Waarom trappen we erin?

Winkeliers worden steeds creatiever in het verhullen van de werkelijke prijshistorie. Niels Holtrop, universitair docent Marketing, legt aan de NOS uit dat dit een bewust psychologisch spel is. Omdat aanbiedingen vaak tijdelijk zijn, ontstaat er bij consumenten de angst om de deal te missen (Fear Of Missing Out).

Doordat het voor de ACM onmogelijk is om elke (kleine) webshop te controleren, nemen veel winkeliers de gok. "Prijsconcurrentie is een krachtig wapen; klanten zijn er enorm gevoelig voor," aldus Holtrop.

Wat kun je doen?

Controleer zelf of de prijzen van producten niet stiekem zijn verhoord door gebruik te maken van de prijshistorie. Op vergelijkingssites kun je bijvoorbeeld zien wat het prijsverloop van een bepaald product is geweest gedurende een jaar.

Op Kieskeurig.nl kun je bijvoorbeeld de prijsdalers bekijken, hier vind je producten die de afgelopen periode sterk in prijs zijn gedaald.