ID.nl logo
Embedded Linux: Dit OS infiltreert al je apparaten
© PXimport
Huis

Embedded Linux: Dit OS infiltreert al je apparaten

De kans is groot dat je zonder dat je het weet thuis talloze apparaten met Linux hebt draaien. Je internetmodem, je draadloos toegangspunt, je nas, je smart-tv en zelfs je smartphone, ze draaien allemaal vaak ‘embedded Linux’. Hoog tijd om hier eens uitgebreid bij stil te staan.

Niet alle computers zijn dozen onder je bureau of laptops op je schoot. Heel wat computers maken onderdeel uit van een groter systeem, zien er niet als een computer uit en zitten vaak verborgen. We spreken dan van een ‘embedded system’, of in het Nederlands ingebed systeem / geïntegreerd systeem.

Enkele voorbeelden maken duidelijk waar het om gaat. Een barcodescanner in de supermarkt, allerlei controlesystemen in fabrieken, de motorbesturing in je auto, je magnetron thuis, je internetmodem, je draadloos toegangspunt, je nas, maar ook alle ‘slimme’ apparaten zoals smartphones, smartwatches, smart-tv’s en de tegenwoordig zo populaire IoT-apparaten (Internet of Things) zijn embedded systems.

De essentie van een embedded system is dat het om een combinatie van hardware en software gaat die samen een product met een specifieke taak vormen. Net zoals een ‘personal computer’ heeft een embedded system invoer en uitvoer, maar in tegenstelling tot een toetsenbord en scherm is dat vaak iets toepassingsspecifieks, zoals sensoren en actuatoren (bijvoorbeeld een motor).

Wat is embedded Linux?

Als we over Linux spreken, bedoelen we meestal het hele besturingssysteem, terwijl Linux strikt gezien alleen de kernel is. Zo ook met embedded Linux: meestal wordt met die term het hele besturingssysteem bedoeld dat op het apparaat draait. Vaak is het een op maat gemaakt Linux-besturingssysteem of een embedded Linux-distributie die specifiek ontworpen is voor embedded systems.

Linus Torvalds begon aan de ontwikkeling van zijn Linux-kernel omdat hij een GNU-besturingssysteem op zijn pc wilde draaien, maar ondertussen ondersteunt de kernel ook vele andere platforms. Er bestaat niet zoiets als een embedded Linux-kernel. Er is één broncode van de Linux-kernel, en die draait op alle mogelijke systemen, van smartphones tot supercomputers. Het enige verschil is dat je specifieke opties of modules tijdens het compileren van de kernel in- of uitschakelt, afhankelijk van wat je nodig hebt, en drivers toevoegt voor specifieke hardware.

Ook tussen embedded systems bestaan er grote verschillen. Een Raspberry Pi, die je ook als een embedded system kunt beschouwen als je er een product mee maakt, is heel wat krachtiger dan je internetmodem. De Linux-kernel heeft in beide systemen waarschijnlijk een heel andere configuratie.

©PXimport

Waarom zou een ontwikkelaar van een embedded system Linux gebruiken? Een van de voordelen noemden we al: de Linux-kernel is uiterst modulair en configureerbaar, waardoor je een kernel kunt compileren die geoptimaliseerd is voor je toepassing. Zeker op embedded systems met een zwakke processor en/of een beperkte hoeveelheid RAM en opslagruimte is dat heel handig: je verwijdert eenvoudig alle ballast.

Die modulariteit en configureerbaarheid zie je ook in het hele besturingssysteem. Een Linux-distributie is een samenraapsel van de kernel, een C-bibliotheek, bestandssysteem en allerlei software. Voor elk van die componenten kun je keuzes maken om je Linux-systeem op maat van je toepassing te ontwikkelen. Zo wordt de C-bibliotheek glibc in veel embedded systems vervangen door het lichtere uClibc en allerlei Unix-opdrachten door BusyBox.

Veel vrijheid

De meeste software die je nodig hebt om een embedded Linux-systeem op te bouwen, is opensource. Dat betekent dat de broncode beschikbaar is onder een vrije licentie zoals de (L)GPL of BSD-licentie. Je hoeft dus helemaal niets te betalen, een licentie te kopen of je te registreren voor een demo om het systeem te evalueren: je kunt er als ontwikkelaar van een embedded system onmiddellijk mee aan de slag. Dat wil overigens niet zeggen dat alles mag. Je dient je nog altijd aan de licentievoorwaarden te houden.

Doordat je toegang tot de broncode hebt en de licentievoorwaarden redelijk vrij zijn, hang je voor embedded Linux niet van één leverancier af. Als je dus een embedded system met behulp van Linux wilt ontwikkelen, heb je de keuze uit talloze leveranciers. Die verkopen je geen software (want die is vrij beschikbaar), maar leveren wel ondersteuning en maatwerk zoals het ontwikkelen van drivers of toevoegen van ondersteuning voor specifieke processoren.

Als je niet meer tevreden bent over één leverancier, kun je bovendien eenvoudig naar een andere overschakelen. Heb je voldoende expertise in huis, dan kun je zelfs besluiten om de integratie van de software die je nodig hebt volledig zelf te doen en je Linux-systeem dus zelf op te bouwen. Dat is een enorm verschil met bedrijfseigen embedded besturingssystemen, waarbij je volledig afhankelijk bent van de leverancier.

Hardware- en softwareondersteuning

De hardwareondersteuning van Linux is immens. De kernel ondersteunt niet alleen de x86-architectuur van onze pc’s, maar ook ARM (gebruikt in veel smartphones, IoT-apparaten en de Raspberry Pi), MIPS, PowerPC en het nieuwe RISC-V. Ondersteuning voor een nieuwe processorarchitectuur of specifieke processor toevoegen, heet ‘porten’ (porting in het Engels). Het voordeel van Linux is: zodra iemand de kernel en wat andere software onder de motorkap, zoals de C-library en de compiler, naar een nieuwe architectuur of processor geport heeft, hoef je zelf dat werk niet meer te doen.

Er draait ook heel veel (opensource-)software op Linux. Voor zowat alle mogelijke netwerkfunctionaliteit bijvoorbeeld bestaat er wel software die op embedded Linux draait. Bovendien werkt software die op één processorarchitectuur draait normaal ook probleemloos op een andere: de meeste Linux-software is immers heel ‘portable’. Schakel je als ontwikkelaar over van één processor naar een andere, dan hoef je je aan de softwarekant doorgaans niet veel zorgen te maken over die overstap.

©PXimport

Hoewel de Raspberry Pi strikt gezien geen embedded system is, geeft de gpio-header van het processorbordje je wel talloze mogelijkheden om sensoren, leds, motorcontrollers en allerlei andere hardware aan te sluiten. Het resultaat kan een (heel krachtig) embedded system zijn. Tegenwoordig is de eerste kennismaking van velen met embedded Linux dan ook de Raspberry Pi. Je installeert dan Raspbian Lite, een minimale Linux-distributie gebaseerd op Debian. Daarop installeer je vervolgens een van de vele beschikbare programma’s of je programmeert je eigen software, bijvoorbeeld in Python.

Draai je Raspbian op je Raspberry Pi en sluit je een toetsenbord, muis en beeldscherm aan, dan is het mogelijk om er een desktopsysteem van te maken, zeker met de Raspberry Pi 4. Maar de flexibiliteit van het computerbordje komt pas tot zijn recht als je het als embedded system inzet. En er bestaan ook gespecialiseerde besturingssystemen zoals LibreELEC, waarmee je van je Raspberry Pi een mediaspeler maakt.

Embedded Linux updaten

Een echt embedded system dient eigenlijk onzichtbaar te zijn. De eindgebruiker hoort er geen omkijken naar te hebben. Belangrijk daarvoor zijn ota-updates (‘over-the-air’): het systeem krijgt dan automatisch updates die beveiligingslekken en andere fouten dichten.

Bij een klassieke Linux-distributie zoals Raspbian werkt dat anders. Daar dien je zelf expliciet op updates te controleren en de beschikbare updates te installeren, met de commando’s sudo apt update en sudo apt upgrade. Er bestaan wel oplossingen om dat te automatiseren (onder Raspbian installeer je er een met sudo apt install unattended-upgrades), maar Debians pakketbeheerder apt mist een belangrijke eigenschap: atomiciteit.

Een update zou ofwel uitgevoerd moeten worden ofwel niet, maar niet half. Als je apt in Raspbian uitvoert (al dan niet automatisch), loop je altijd het risico dat een update om welke reden dan ook (bijvoorbeeld een tijdelijke netwerkstoring) maar half uitgevoerd is. Het besturingssysteem bevindt zich dan in een ongedefinieerde toestand en je embedded system werkt mogelijk niet meer.

Eén oplossing voor ota-updates van embedded Linux-systemen is Mender. Hiermee draai je een managementserver (of maak je gebruik van de managementserver van het bedrijf Mender), die via het netwerk updates naar je embedded systems verstuurt.

©PXimport

Een update wordt niet onmiddellijk in het draaiende systeem geïnstalleerd. Je embedded system heeft bij deze aanpak namelijk twee systeempartities: een actieve en een passieve.

De actieve systeempartitie bevat het besturingssysteem dat momenteel draait. Updates worden in de passieve systeempartitie geïnstalleerd, en daarna herstart je systeem. Als de update mislukt blijkt te zijn, draait het systeem die volledig terug en blijf je de huidige actieve systeempartitie gebruiken. Als de update lukt, wordt de passieve systeempartitie actief gemaakt en gebruik je dus de partitie met updates. Mender is een opensource-oplossing en ondersteunt meer dan 30 processorbordjes, onder andere de Raspberry Pi met Raspbian.

Ubuntu Core en Yocto Project

Canonical biedt met Ubuntu Core een andere oplossing: een minimale Linux-distributie met atomaire updates. Ubuntu Core draait op de Raspberry Pi 2 of 3, Intel Joule, Qualcomm Dragonboard, Nvidia Jetson en nog enkele andere processorbordjes. Alle software wordt in de vorm van ‘snaps’ verdeeld. Een snap is een programma met alle bijbehorende softwarebibliotheken, afgescheiden van andere snaps om compatibiliteitsproblemen te vermijden. Als je een snap updatet, gebeurt dat atomair: bij een mislukte update wordt er niets geïnstalleerd en blijf je gewoon de vorige versie gebruiken. Elke snap draait bovendien in een eigen ‘sandbox’, wat de beveiliging ten goede komt.

Die atomaire updates gelden niet alleen voor de software, maar ook voor de kernel en het besturingssysteem. Als er bij een update iets misloopt, draait het systeem die automatisch terug naar de laatste werkende toestand. Op de achtergrond werkt dat net zoals bij Menders oplossing ook met een actieve en passieve systeempartitie. Ubuntu Core installeert updates overigens automatisch. Dankzij de atomaire updates is dat niet zo’n groot risico als bij een klassieke pakketbeheerder.

©PXimport

Maar het belangrijkste project in de wereld van embedded Linux is geen embedded Linux-distributie, maar software waarmee je zo’n distributie kunt maken: Yocto Project. Dit project van de Linux Foundation biedt een framework aan om zelf je eigen embedded Linux-distributie te bouwen.

Yocto Project wordt relatief veel gebruikt in de embedded wereld en de IoT-industrie. Het ondersteunt Intel/AMD, ARM, MIPS en PowerPC en biedt een referentiedistributie, Poky, die als voorbeeld dient voor een minimaal embedded Linux-systeem dat je naar wens kunt aanpassen. De ontwikkeling doe je rechtstreeks op een Linux-desktop, of op Windows en macOS via de ontwikkelomgeving CROPS die gebruikmaakt van Docker. Er is ook een webgebaseerde interface, Toaster, voor basisfunctionaliteit. Maar als je echt aan de slag wilt met Yocto, zul je moeten gaan programmeren.

Linux op je router

De beste manier om kennis te maken met een embedded system dat niet zo krachtig is als een Raspberry Pi, is waarschijnlijk het installeren van Linux op een router. OpenWrt en DD-WRT zijn de populairste Linux-gebaseerde besturingssystemen voor draadloze routers en toegangspunten. Je moet dan wel een ondersteund model hebben: zowel OpenWrt als DD-WRT bieden een lijst van apparaten aan. Hou er ook rekening mee dat OpenWrt 19.07 de laatste versie is die nog apparaten met slechts 4 MB flash en 32 MB RAM ondersteunt.

Krijgt je draadloze toegangspunt geen updates meer van de leverancier, dan kun je de levensduur in veel gevallen nog verlengen door een van deze opensourcebesturingssystemen te installeren. Met wat geluk kun je gewoon een firmware-image downloaden en via de webinterface van het standaard besturingssysteem van je toegangspunt installeren, maar in andere gevallen verloopt de installatie omslachtiger. Bij sommige modellen dien je zelfs de behuizing open te doen en pinnetjes op het moederbord te solderen om een seriële kabel aan te sluiten. De wiki’s van OpenWrt en DD-WRT bieden gelukkig voor elk ondersteund model installatie-instructies.

Apparaatspecifieke aanpassingen

Dat je voor elk model specifieke installatie-instructies dient te volgen, komt doordat er voor embedded systems – in tegenstelling tot bijvoorbeeld pc’s – geen algemeen aanvaarde standaarden bestaan. Embedded systems zijn veel heterogener, met allerlei verschillende processorarchitecturen, chipsets, randapparatuur enzovoort. Bovendien passen veel ontwikkelaars van draadloze toegangspunten de Linux-kernel en andere opensourcesoftware aan om hun hardware te ondersteunen, zonder die aanpassingen aan deze projecten bij te dragen.

Een project zoals OpenWrt is dan ook verplicht om al die aanpassingen (‘patches’) te verzamelen (de leverancier van het apparaat is verplicht om die te publiceren als het om software gaat die de GPL als licentie gebruikt, zoals de Linux-kernel) en toe te passen om een firmware-image voor dat specifieke model te bouwen. Gelukkig zijn er ook routers die standaard al met een op OpenWrt gebaseerd besturingssysteem verkocht worden, zoals de Omnia en de MOX van het Tsjechische bedrijf Turris.

©PXimport

En nu zelf!

Embedded Linux-systemen zijn heel interessante systemen om mee te experimenteren. Je kennis van Linux op de desktop komt daarbij van pas, maar je dient ook heel wat andere kennis op te doen omdat alles toch net iets anders werkt. Je krijgt met een andere processorarchitectuur te maken (doorgaans ARM in plaats van Intel), een andere bootloader (U-Boot in plaats van GRUB), andere opslagmedia (flashgeheugen of een sd-kaart in plaats van een ssd of harde schijf) enzovoort.

Op de Embedded Linux Wiki vind je een schat aan informatie. Handig voor als je hier dieper op in wilt gaan, maar hou er rekening mee dat veel pagina’s op deze wiki verouderd zijn. Wat kennis van shellscripting en van programmeren, bijvoorbeeld in Python, komt ook van pas. Maar wie echt aan de ontwikkeling van embedded software wil beginnen, ontkomt er niet aan om de programmeertaal C te leren. Die laat je toe om nog ‘dichter tegen de hardware’ te programmeren.

▼ Volgende artikel
Van prompt naar programma: leer programmeren met AI
© monsitj - stock.adobe.com
Huis

Van prompt naar programma: leer programmeren met AI

Niet alleen het saaie en repetitieve werk wordt vervangen door AI. Je bent óók als kenniswerker niet meer zeker van een baan. Software wordt al grotendeels door AI geschreven. Gelukkig kun je daar als hobbyprogrammeur ook enorm van profiteren. Het brengt naast tijdwinst ook veel gemak. We helpen je op weg met drie praktische tools: ChatGPT, Aider en de Windsurf Editor. We maken enkele eenvoudige voorbeelden, zodat je een helder beeld hebt van je potentiële workflow.

In dit artikel laten we zien hoe je met hulp van AI razendsnel leert programmeren en zelfs complete programma’s bouwt:

  • Gebruik ChatGPT als programmeerpartner en laat het een volledig werkend spelletje bouwen met HTML, CSS en JavaScript
  • Installeer Aider en gebruik het in combinatie met Git om projecten via de terminal te ontwikkelen
  • Ontdek Windsurf Editor als grafisch alternatief met AI-assistent Cascade

Lees ook: Leren programmeren? Met deze tools is coderen geen geheimcode meer

Grote taalmodellen zijn al zo goed dat je comfortabel complete programma’s door AI kunt laten maken, zelfs zonder enige programmeerkennis. Afhankelijk van de tools die je gebruikt, voelt dat toch alsof je samen aan code werkt, ook wel pair-programmeren genoemd. Je houdt dus enige controle en kunt er, als je oplet, veel van leren. Ook al wordt het harde werk door AI gedaan.

Een bijkomend voordeel is dat je heel gericht aanpassingen kunt laten doen of vragen kunt stellen over de code, zonder dat je de documentatie of websites als Stack Overflow hoeft door te spitten. Het is geen verrassing dat laatstgenoemde website met fors dalende bezoekersaantallen te maken heeft. Ook andere taken, zoals het schrijven van de documentatie, zijn snel geregeld.

In dit artikel gaan we een eenvoudig programma maken met AI, zodat je een goed beeld hebt van de workflow. We gebruiken drie verschillende tools. We starten met het vertrouwde ChatGPT, al kun je ook bijvoorbeeld voor Claude of Gemini kiezen. Daarna gaan we met Aider in combinatie met Git aan de slag. Daarmee werk je ‘samen’ aan programmacode via de opdrachtprompt, in ons voorbeeld binnen het vertrouwde Visual Studio Code. Tot slot gaan we met de Windsurf Editor aan de slag, een completere grafische ontwikkelomgeving met geïntegreerde AI-features, die je van begin tot eind ondersteunt bij het maken van je programma. 

Basisbeginselen van het programmeren

Het is handig als je de basisbeginselen van een programmeertaal kent. Ook daar kan AI van nut zijn. Je kunt veel leren van de voorbeelden die worden gegenereerd. Je kunt elk detail uit laten leggen, of om meer voorbeelden vragen. Dat is heel effectief!

Ook om de basisbeginselen te leren is AI nuttig. Pas bijvoorbeeld de Pareto-methode toe. Die methode stelt dat 80 procent van de resultaten voortkomt uit 20 procent van de inspanningen. Vraag de chatbot om een plan te maken dat deze regel toepast op het leren programmeren van bijvoorbeeld Python, door te focussen op 20 procent van de concepten, tools en technieken die 80 procent van de praktische toepassingen en problemen oplossen voor een beginnende programmeur. Vraag om een gestructureerd plan dat in korte tijd resultaat oplevert, inclusief voorbeelden en kleine projecten om vaardigheden direct toe te passen.

Vraag aan ChatGPT om een leerplan op te stellen om je te helpen bij het programmeren.

ChatGPT

Chatbot

Grote taalmodellen (LLM’s) vormen de basis voor chatbots als OpenAI’s ChatGPT en Anthropics Claude, maar óók voor de tools die we hierna behandelen. Feitelijk benaderen we de chatbots in dit eerste deel van het artikel rechtstreeks, via een browser of app. De andere tools gebruiken de API van deze bedrijven. Raadpleeg eventueel voor het starten met ChatGPT deze basiscursus.

De nieuwere modellen (we gebruiken overwegend ChatGPT 4o en Claude 3.5 Sonnet) laten heel goede resultaten zien voor programmeertaken. Ze helpen uiteraard niet alleen om programmacode te schrijven maar kunnen code ook uitleggen, fouten oplossen en de documentatie schrijven. Ook kun je uitstekend brainstormen over een project of ideeën. Het is daarom, óók als je andere tools voor programmeren gebruikt, enorm praktisch om erbij te hebben! Toegang tot ChatGPT is gratis met beperkingen. Een abonnement is minder gelimiteerd en geeft vaak toegang tot nieuwere modellen (zoals o1 of o3-mini). Zo’n abonnement is niet bruikbaar voor de andere tools, die gebruiken namelijk de API waarvoor je aparte credits moet aanschaffen.

Een chatbot biedt goede ondersteuning bij al je programmeervragen.

Eerste stappen

We beginnen met een eenvoudig voorbeeld en vragen aan ChatGPT om een spelletje boter-kaas-en-eieren te maken, ook wel bekend als tic-tac-toe. Hoewel het Engels soms betere resultaten kan geven, werken we voor dit artikel volledig in het Nederlands. We starten met deze prompt: “Maak een volledig functionele boter-kaas-en-eieren voor in een browser. Maak de HTML-structuur, voeg CSS-stijlen toe en implementeer de JavaScript-logica. Maak een scheiding tussen HTML, CSS en JavaScript. Zorg dat het programma responsief is zodat het bij elke schermgrootte werkt.”

ChatGPT genereert de gevraagde code. Je kunt individueel de HTML, CSS en JavaScript kopiëren. Om het te proberen, kun je alles plakken op websites als www.jsfiddle.net en www.codepen.io. Voor dit voorbeeld hebben we bij JSFiddle een projectpagina aangemaakt. We gaan dit voorbeeld in de volgende stappen verder verbeteren, steeds met links naar de verbeterde versie.

De eerste versies van het spel boter-kaas-en-eieren.

Geluiden toevoegen

We vragen ChatGPT om het programma aan te passen, zodat er een geluid wordt afgespeeld bij elke zet. ChatGPT voegt daarop een audio-element toe aan de HTML-code. Het past ook het script aan om dit aan te roepen bij elke zet. Je moet nog wel zelf het mp3-bestand plaatsen in de uiteindelijke programmamap of een volledige link naar het mp3-bestand invullen in de HTML-code:

<audio id="move-sound" src="muisklik.mp3"></audio>

Er zijn overigens veel websites waar je leuke geluidseffecten kunt vinden die je vrij kunt gebruiken, waaronder Pixabay. Op deze pagina zie je onze aangepaste versie.

De aangepaste HTML-code bevat een verwijzing naar een mp3-bestand.

Computertegenstander

We vragen ChatGPT vervolgens om een slimme computertegenstander toe te voegen, waarbij aan het begin van het spel wordt gekozen wie er mag beginnen. Via deze webpagina kun je deze versie zien. De computertegenstander blijkt in eerste instantie overigens helemaal niet zo slim, waardoor je makkelijk je potjes wint. Maar dat is snel opgelost. Na ons verzoek om de computertegenstander slimmer te maken, controleert het programma voortaan eerst op mogelijke winnende zetten en blokkeert het de tegenstander indien nodig. Als er geen direct winnende of blokkerende zetten zijn, kiest het een willekeurige lege cel. Deze slimmere versie kun je hier bekijken.

Het aangepaste script op een canvas in ChatGPT.

Uiterlijk verfraaien

Als laatste hebben we gevraagd het uiterlijk wat mooier te maken. Hierbij wordt voornamelijk de CSS-code aangepast om de visuele stijl van het spel te verbeteren. Het resultaat is geslaagd: ChatGPT geeft de achtergrond een mooi kleurverloop. Ook zijn de stijlen van de knoppen en speelvelden aangepast. Het levert een veel moderner en aantrekkelijker uiterlijk op.

Je kunt ChatGPT uiteraard steeds vragen om het script of een deel daarvan uit te leggen. Ben je het overzicht over de wijzigingen kwijt, dan kun je uiteraard ook vragen om de laatste HTML-code in te zien, of de laatste versie van het script. Eventueel op een canvas. Toch misten wij in ChatGPT soms wat overzicht en is het bovendien lastig om een stapje terug te doen als een aanpassing niet het gewenste resultaat oplevert. Dit zijn zaken die we in het volgende deel gaan aanpakken met Aider.

De gemoderniseerde versie van boter-kaas-en-eieren.

Contextvenster bij een taalmodel

Bij het werken met een groot taalmodel ofwel een Large Language Model (LLM) zijn er enkele technische beperkingen. Een daarvan is het contextvenster. Dat kun je zien als de hoeveelheid tekst die het model kan onthouden, gemeten in tokens. Een token is een deel van een woord en kan ook spaties en leestekens bevatten. Gemiddeld is een token ongeveer 3 tot 4 tekens groot.

Eerdere versies van ChatGPT hadden een relatief klein contextvenster van 4096 tokens. Het kan dan niet altijd alle details onthouden van de gebruikte teksten. Tegenwoordig is het contextvenster veel groter, en onthouden de modellen gemakkelijk 128.000 tokens of meer. Dat is ongeveer een heel boek! Dat is niet alleen nuttig bij het werken met hele lange teksten of artikelen, maar ook bij programmeerwerk, waar je vaak met grote bibliotheken te maken hebt.

Aider

Opdrachtprompt

Voor grotere programmeerprojecten is het werken met een chatbot al snel vervelend en verwarrend. Veel praktischer is een tool die met jouw eigen projectbestanden werkt en zelf of samen de gewenste aanpassingen maakt. Als je geen moeite hebt met het werken met een opdrachtprompt, is Aider een uitstekende optie. Die tool helpt met het schrijven en aanpassen van code.

Aider is opensource en werkt met heel veel LLM’s samen. Hier gebruiken we de API voor Claude 3.5 Sonnet, maar je kunt ook de API van OpenAI gebruiken of een LLM die je zelf lokaal draait of elders, zoals via OpenRouter. De integratie met Git is enorm praktisch. Voor elke aangebrachte wijziging voert het een ‘commit’ uit, voorzien van een duidelijke omschrijving, zodat je achteraf een goed overzicht met alle veranderingen hebt en ook stapjes terug kunt doen. Niet alle alternatieven bieden dit en dat is vooral een gemis als er iets fout gaat en je geen idee meer hebt hoe je dat moet oplossen.

Aider werkt samen met alle gangbare LLM’s.

Voorbereiding

We willen weer laten zien hoe je het spelletje boter-kaas-en-eieren met Aider zou kunnen maken. We gebruiken het voor velen vertrouwde programma Visual Studio Code onder Windows en installeren Aider via een opdrachtprompt binnen die ontwikkelomgeving. Binnen de editor kun je uiteraard alle gegenereerde bestanden bekijken en handmatig aanpassen. Voor de installatie van Aider heb je Python nodig. Zet tijdens de installatie van Python een vinkje bij Add python.exe to PATH, zodat je Python vanuit elke map kunt aanroepen.

Installeer ook Visual Studio Code als je dat nog niet eerder hebt gedaan. Visual Studio Code biedt een mogelijkheid om Copilot als assistent te gebruiken, maar dat slaan we hier over.

Installeer ook Git, zodat versiebeheer mogelijk is. Kies tijdens de installatie van Git voor het gebruik van Visual Studio Code als standaardeditor. Verder kun je alle standaardinstellingen accepteren. Als je Python, Visual Studio Code en Git hebt geïnstalleerd, kun je door met de installatie van Aider.

Installeer Python onder Windows voordat je met Aider aan de slag gaat.

Installatie Aider

We kunnen nu Aider installeren. Open daarvoor Visual Studio Code en kies in het menu de optie Terminal / New Terminal. Verander de terminal, via de optie rechtsboven in het venster, naar Git Bash. Installeer daarna Aider met de volgende twee opdrachten:

python -m pip install aider-install
aider-install

Sluit de terminalvenster via het kruisje rechtsboven. Open dan een nieuwe terminal en wissel weer naar Git Bash. Als je Aider niet kunt aanroepen met aider zul je het PATH moeten uitbreiden met de aangegeven opdracht, zoals in het voorbeeld hieronder:

export PATH="C:\\Users\\gertj\\.local\\bin:$PATH"

Zorg dat je in dit voorbeeld voor Claude 3.5 Sonnet een API-sleutel hebt en voldoende credits om mee te beginnen (zie het kader ‘API-sleutel maken voor Claude’). Exporteer deze API-sleutel zodat Aider deze direct kan gebruiken:

export ANTHROPIC_API_KEY=sk-ant…

Maak nu een nieuwe map voor je toepassing, blader naar die map en maak een Git-repository:

mkdir tictactoe
cd tictactoe
git init .

Je kunt nu beginnen met programmeren, met de ondersteuning van Aider!

We installeren Aider om het binnen Visual Studio Code te gebruiken.

API-sleutel maken voor Claude

Bij Aider werken we zoals aangegeven met Claude 3.5 Sonnet, een populaire optie onder programmeurs. Voor toegang is een API-sleutel nodig. Ga daarvoor naar de console van Anthropic. Vul je e-mailadres in. Via e-mail ontvang je een beveiligde link waarmee je kunt inloggen. Ga dan naar Settings / API keys en klik op Create Key. Vul een naam in, bijvoorbeeld Aider, en klik op Add. Noteer de API-sleutel, deze is later niet meer zichtbaar!

Je hebt ook wat credits nodig. Ga daarvoor naar Billing en voeg credits toe met een creditcard via de optie Add Funds. Begin met een klein bedrag, zoals 10 dollar. Heb je over? Je kunt het altijd nog opmaken door een chatbot als Jan met de API te verbinden.

Via de console van Anthropic kun je een API-sleutel maken.

Programma maken

We gaan ons eerste programma maken. Zorg dat je een terminalvenster hebt geopend en bent gewisseld naar Git Bash. De assistent start je dan met de volgende opdracht:

aider --sonnet

Er wordt de eerste keer gevraagd om .aider* en .env toe te voegen aan .gitignore. Dat raden we aan! Hiermee voorkom je dat deze bestanden, vaak met wachtwoorden en dergelijke, per ongeluk in je Git-repository worden opgenomen en daardoor in potentie online komen, als je de repository via GitHub beschikbaar maakt.

Via de prompt kun je nu je opdrachten afvuren. We vragen zoals eerder om een volledig functionele en responsieve boter-kaas-en-eieren voor in een browser met de vereiste HTML-structuur, CSS-stijlen en JavaScript-logica in aparte bestanden.

Aider gaat direct aan de slag en laat heel overzichtelijk alle aanpassingen zien, met een beschrijving van de uiteindelijke functionaliteit. Het vraagt netjes of het de nieuwe bestanden mag maken (index.html, styles.css en script.js) en daarna of het deze mag openen in een browser. Het spel is in deze eerste versie volledig responsief met een duidelijke gebruikersinterface, houdt de speelstatus bij, detecteert wanneer iemand wint of als het een gelijkspel is, heeft een knop om het spel opnieuw te starten en is helemaal in het Nederlands. Een goed begin!

Aider heeft het programma voor ons uitgewerkt.

Aanpassingen maken

We vragen opnieuw in natuurlijke taal om wijzigingen te maken. De workflow is erg prettig. Aider geeft eerst aan welke bestanden waarschijnlijk moeten worden gewijzigd. Voor het geluid stelt het bijvoorbeeld wijzigingen in index.html en script.js voor. Dan vraagt Aider of het deze bestanden mag toevoegen aan de chat.

Als de radartjes zijn uitgedraaid, na interactie met Claude, geeft Aider heel nauwkeurig aan welke regels in welke bestanden moeten worden gewijzigd. Ook geeft Aider aan dat je een mp3-bestand genaamd move.mp3 in dezelfde map moet plaatsen.

We vragen Aider daarna ook om een slimme computertegenstander toe te voegen. Die is meteen heel slim en probeert direct te winnen als dat kan, blokkeert winnende zetten van de tegenstander, probeert het centrum te veroveren en kiest anders voor hoeken of willekeurige zetten.

Tot slot vragen we Aider om het programma te verfraaien met een moderner uiterlijk. Dat levert een flinke metamorfose op. Bekijk hier het resultaat.

Via een comfortabel proces maakt het alle gewenste aanpassingen.

Kosten voor werken met Aider

We hebben tijdens het werken met Aider continu de credits in de gaten gehouden. We controleerden dit via de console bij Anthropic, maar Aider zelf toont ook bij elke actie welke kosten het heeft gemaakt. Voor de meeste aanpassingen gaat het om zo’n 5 tot 11 dollarcent. In totaal heeft het programma ongeveer 0,23 dollar (circa 0,22 euro) gekost. Het hangt er voornamelijk vanaf hoeveel tokens er nodig zijn, wat weer samenhangt met de omvang van de bestanden die aan de chat worden toegevoegd.

Integratie met Git

De standaard integratie met Git biedt veel voordelen. Als Aider aanpassingen maakt aan een bepaald bestand zal het in Git een heldere beschrijving toevoegen aan de zogeheten commit. In Visual Studio Code kun je deze historische aanpassingen eenvoudig terugzien. Klik daarvoor op een bestand en open in de balk aan de linkerkant Timeline. Zorg dat de filterinstelling is ingesteld op Git History.

Nu zie je de commit-geschiedenis van het geselecteerde bestand. Door op een specifieke commit te klikken, kun je de aangebrachte wijzigingen bekijken. Binnen Aider zijn er ook nog wat trucjes. Zo kun je met /diff zien wat de laatste veranderingen zijn. Met /undo kun je die eenvoudig ongedaan maken.

We hebben de repository op GitHub gezet. Ook hier kun je alle veranderingen bekijken. Open daarvoor een bestand, zoals script.js, en ga dan rechtsboven naar History. Hier zie je de verschillende wijzigingen. Als je op een van de aanpassingen klikt, zie je netjes welke veranderingen in de code zijn gemaakt.

Je kunt handig zien welke historische wijzigingen zijn aangebracht in bestanden.

Git en GitHub

Aider gebruikt een git-repository. Sommige mensen verwarren dit met GitHub. Je kunt met Git prima alleen een lokale repository maken, op het systeem waarop je met Aider werkt. Optioneel kun je deze repository met GitHub verbinden, zodat je in feite een kopie in de cloud hebt. Dat is voor jezelf wel heel praktisch, omdat je veel makkelijker de wijzigingen kunt bijhouden en bestuderen. En je kunt ook met anderen samenwerken aan code.

Ook interessant om te lezen: GitHub Codespaces: altijd de juiste tools bij de hand

We hebben de repository gedeeld met GitHub, zodat je alle veranderingen kunt inzien.

Windsurf Editor

 Complete ontwikkelomgeving

Zoek je een completere ontwikkelomgeving met geïntegreerde AI, dan zijn Cursor AI en Windsurf Editor twee populaire opties. Cursor AI is een gevestigde speler, maar krijgt steeds meer concurrentie van het nieuwere Windsurf Editor. Beide ontwikkelteams blijven verbeteringen doorvoeren om niet voor elkaar onder te doen.

Beide programma’s zijn bovendien klonen van Visual Studio Code, de bekende editor van Microsoft die we ook voor Aider hebben gebruikt. Daarom lijken ze in veel opzichten op elkaar. Het kan handig zijn om verschillende thema’s te gebruiken als je ze naast elkaar gebruikt, zodat je ze uit elkaar kunt houden.

Windsurf Editor werkt met een ingebouwde assistent genaamd Cascade.

Cascade

We hebben ook in Windsurf geprobeerd om het spelletje boter-kaas-en-eieren uit dit artikel te maken. De assistent in Windsurf Editor heet Cascade; via het Cascade-deelvenster kun je hem direct aan het werk zetten. Een leuk detail is dat niet alleen code wordt gegenereerd, maar dat er ook veel aanvullende acties voor je worden uitgevoerd, zoals het aanmaken van een map voor je project en voor de geluiden, en het maken van een mp3-bestand.

Bij elke stap kun je zien welke bestanden worden aangepast en de voorgestelde wijzigingen controleren en bevestigen. Je hoeft niet, zoals bij Aider, zelf een API-sleutel te regelen voor toegang. Je gebruikt steeds het model van Cascade en de administratieve kant wordt via je account geregeld, op basis van credits (zie volgende paragraaf). Zo’n diepere integratie is heel praktisch. Toch heeft de workflow veel overeenkomsten met Aider.

Via een deelvenster kun je een conversatie met Cascade voeren.

Werken met credits

Windsurf werkt met credits voor verschillende taken. Zo worden User Prompt-credits voor elke interactie met de assistent gebruikt en Flow Action-credits voor alle acties die worden uitgevoerd. Als je de limiet bereikt voor het premiummodel, wordt overgeschakeld naar het basismodel. De proefperiode van 14 dagen geeft je ruim voldoende credits om het voorbeeldprogramma uit dit artikel te maken. Sterker nog, je hebt ongeveer vijftien keer meer credits dan nodig, dus je kunt ook grotere en complexere programma’s proberen te maken.

Buiten die proefperiode is, om het premiummodel te gebruiken, een upgrade naar de Pro-versie bijna onvermijdelijk (ca. 18 euro per maand). Je hebt dan wel elke maand een ruime hoeveelheid credits en kunt vrij voordelig credits bijkopen.

Windsurf Editor werkt met een systeem van credits.

Beste optie voor hobbyprogrammeur?

Over het algemeen werkt het programmeren met een chatbot zoals ChatGPT goed. Voor losse functies of snippets werkt het zelfs uitstekend. Maar het is lastig om het overzicht te behouden over de gegenereerde code en eventuele aanpassingen, zeker als het om wijzigingen in meerdere bestanden gaat.

Aider en Windsurf Editor hebben een fijnere workflow, omdat ze de lokale bestanden direct voor je wijzigen, eventueel meerdere tegelijkertijd. Wat kosten betreft is Aider waarschijnlijk interessanter voor de hobbyprogrammeur die af en toe een project oppakt. Je kunt ad-hoc wat credits bijkopen of eens een ander model proberen, lokaal of via bijvoorbeeld OpenRouter. Het opensource DeepSeek R1 bijvoorbeeld. Je kunt bovendien elke ontwikkelomgeving kiezen, terwijl Windsurf Editor volledig op Visual Studio leunt. De integratie met Git ook een praktisch voordeel van Aider.

▼ Volgende artikel
Zo deel je je keuken handig en logisch in
© Andy Dean Photography
Huis

Zo deel je je keuken handig en logisch in

Of je nu graag uitgebreid kookt of elke avond snel klaar wilt zijn: een slimme keukenindeling maakt het verschil. Alles moet logisch op zijn plek staan, zodat je moeiteloos overal bij kunt en na afloop ook weinig tijd kwijt bent aan opruimen.

Je keuken slim indelen? Wij hebben tips voor:
  • Vaatwasser, gootsteen en vuilnisbak
  • Werkblad en kookplaat
  • Koelkast
  • Neem de keuken-driehoek als uitgangspunt
  • Kies de optimale werkhoogte
  • Opbergruimte

Lees ook: Fornuis op maat: kies het aantal pitten dat bij je past

Vaatwasser, gootsteen en vuilnisbak

Heb je plannen voor een nieuwe keuken? Denk dan nu al na over welke slimme keuzes je kunt maken met de indeling. Plaats bijvoorbeeld de vaatwasser, de spoelbak en de afvalemmer dicht bij elkaar. Je hoeft dan nooit ver te lopen met vieze borden en je kunt ze makkelijk leegschrapen, eventueel afspoelen en direct inruimen. Staat de afvalbak in een kastje direct naast de vaatwasser? Let er dan op dat je het deurtje nog goed kunt openen als de deur van de vaatwasser omlaag staat. Dat werkt makkelijker bij het inruimen. Plaats verder de vaatwasser niet direct tegen een zijmuur. Tijdens het inruimen loop je dan sneller kans op spetters tegen de muur.

Werkblad en kookplaat

Het werkblad is meer dan alleen een plek om iets op te zetten. Je gebruikt het om te snijden, te mixen, spullen neer te leggen en borden op te scheppen. Zorg daarom dat je voldoende vrije werkruimte overhoudt – dus niet alles volbouwen met apparatuur. Plaats de spoelbak of kookplaat liever niet op een hoek. Je hebt aan beide kanten plek nodig, zodat je je handen vrij kunt houden en spetters opvangt. Reken aan weerszijden minimaal veertig centimeter. Dat oogt niet alleen rustiger, het werkt ook prettiger. Handig om te weten: bij je keukenspecialist wordt hiervoor vaak de term aflegruimte gebruikt. En nog even over de kookplaat: plaats die bij voorkeur niet pal naast de koelkast of een hoge kast; dat geeft weinig bewegingsvrijheid en maakt het lastig om met meerdere mensen tegelijk in de keuken te staan.

©Olga Yastremska and Leonid Yastremskiy

Koelkast

Een koelkast gebruik je vaker dan je denkt – gemiddeld zo'n 35 keer per dag. Zet 'm daarom op een plek waar je er makkelijk bij kunt, ook als je vanuit de woonkamer even snel iets wilt pakken. Zet de koelkast liever niet helemaal achterin of op een plek waar je niet vanzelf langsloopt; dat is al snel onhandig in het dagelijks gebruik. Let ook op de temperatuur rondom de koelkast. Zet hem niet naast een oven, radiator of op een plek waar veel zonlicht komt. Kan het echt niet anders, zorg dan voor een isolerende tussenplaat en houd minstens drie centimeter ruimte vrij tussen warmtebron en koelkast.

Gebruik de keuken-driehoek

In de basis draait een keuken om drie functies: koken, spoelen en koelen. Je fornuis, gootsteen en koelkast vormen samen een denkbeeldige driehoek. Als de afstanden tussen deze drie goed gekozen zijn, werk je prettiger. Staan ze te ver van elkaar, dan loop je onnodig veel. Staan ze te dicht bij elkaar, dan dan wordt het al snel krap en onhandig. Een keukenspecialist kan helpen bij het vinden van een goede verhouding, maar je merkt het zelf vaak ook al als iets net niet lekker werkt.

Optimale werkhoogte

Ook de hoogte van je werkplekken telt mee. Een oven op armhoogte is een stuk prettiger dan op kniehoogte, zeker als je vaak bakt. Het voorkomt bukken. Heb je een kleine keuken? Kies dan voor een compacte oven of voor een fornuis met geïntegreerde oven. Datzelfde geldt voor de vaatwasser: als je die wat hoger plaatst, spaar je je rug en knieën. Voor de kookplaat geldt een andere regel: meet de afstand van je onderarm tot het werkblad. Is die ongeveer twaalf centimeter, dan zit je goed qua houding en belast je je schouders niet onnodig.

Apparatuur wat hoger plaatsen (als dat kan) heeft nog een voordeel. Wanneer je kleine kinderen hebt rondlopen, kunnen die er minder makkelijk bij. Wel zo veilig!

©lev dolgachov

Opbergruimte

Tot slot: denk na over hoe je spullen opbergt. Onderkastjes bieden veel ruimte, maar vragen vaak veel van je rug. Bovenkastjes kunnen juist weer te hoog zijn. Een buffetkast biedt uitkomst: wat je dagelijks gebruikt zet je op ooghoogte, wat minder vaak nodig is kan best wat lager of juist hoger.

Slim indelen = een fijnere keuken!

Een goede keuken draait niet alleen om de juiste apparatuur, maar vooral ook om slimme keuzes die het koken makkelijker maken. Denk na over looproutes, werkhoogtes en voldoende bewegingsruimte. Positioneer alles op logische plekken, zorg voor een werkblad met voldoende vrije ruimte en let op kleine details zoals de draairichting van kastdeurtjes. Daarmee wordt de keuken (nog meer) het hart van je huis!