ID.nl logo
Welke microcontrollers bestaan er en waar zijn ze goed voor?
© https://ethereumcode.io/
Huis

Welke microcontrollers bestaan er en waar zijn ze goed voor?

Ze zitten in je auto, in je magnetron, in je wasmachine, maar ook in je pc, en ze vormen het hart van de Arduino- en ESP32-ontwikkelbordjes: microcontrollers. Onzichtbaar op de achtergrond wordt bijna ons hele leven erdoor draaiende gehouden. Welke microcontrollers bestaan er en hoe werken ze precies?

Als je een maaltijd in je magnetron zet, kies je de juiste tijd en instellingen en zet je hem aan. Aan het einde zegt je magnetron ‘ping!’ en is je maaltijd opgewarmd.

Heb je je al eens afgevraagd hoe dat werkt? Eigenlijk zit er in je magnetron een hele (kleine) computer die een programmaatje afwerkt dat enerzijds reageert op de knoppen en anderzijds, als je dat hebt, op het lcd-scherm. Ook stuurt de computer de elektronenbuis aan die de maaltijd met microgolven verwarmt. Die kleine computer is een microcontroller. Je hebt er waarschijnlijk tientallen in huis.

Een microcontroller is een chip die eigenlijk een hele computer in één pakket behuist. Daarin zitten een processor, geheugen (ram en rom) en allerlei poorten naar de buitenwereld. Terwijl je bij een gemiddelde processor voor je desktopcomputer dus nog een heel moederbord, ram-geheugen en storage nodig hebt om er iets nuttigs mee te doen, heb je bij een microcontroller slechts een beperkt aantal externe componenten nodig. Wat weerstanden en condensatoren zijn doorgaans voldoende voor een werkende microcontroller-opstelling.

Die verregaande integratie in een microcontroller is mogelijk omdat dit geen chip is voor flexibele apparaten, zoals pc’s. Microcontrollers zijn ontworpen om specifieke toepassingen uit te voeren, zoals in een magnetron, een pinautomaat, een wasmachine of een pacemaker. Een laag stroomverbruik en een lage kostprijs zijn voor die toepassingen belangrijk.

Lage prestaties met hoge impact

Low-end microcontrollers hebben dan ook een processorsnelheid van maar enkele MHz en slechts enkele kilobytes ram-geheugen. Kijk bijvoorbeeld naar de Arduino Uno, een populair ontwikkelbordje om mee te experimenteren. De microcontroller op dat bordje is de AVR ATmega328P. Die werkt op een kloksnelheid van 16 MHz, heeft 2 KB sram, 1 KB eeprom en 32 KB flashgeheugen.

Vergeleken met de gigahertzen, gigabytes en terabytes die we op onze pc’s gewend zijn, lijken die specificaties ondermaats. Maar toch kun je hiermee ongelooflijk veel projecten aansturen: muziekinstrumenten, robotautootjes, weerstations, je planten automatisch water geven... Je kunt het zo gek niet bedenken of iemand heeft het al weleens met die kleine ATmega328P gedaan.

Microcontroller of SoC? Waarschijnlijk heb je ook al gehoord van een system-on-a-chip (SoC), wat op het eerste gezicht hetzelfde lijkt: een processor geïntegreerd met andere componenten. De grens tussen wat we als een microcontroller beschouwen en wat als een SoC is nogal vaag. Maar doorgaans is een SoC met een snellere processor uitgerust, heeft die meer ram en bevat hij mogelijk radiochips (wifi en/of mobiel netwerk) of een ingebouwde gpu.  Alle smartphones en tablets zijn dan ook gebouwd rond een SoC, maar ook de Raspberry Pi, apparaten zoals een nas en slimme luidsprekers. Ook de Apple M1 is een SoC: deze integreert een arm-processor, ram, gpu, image-signal-processor, Secure Enclave (een coprocessor voor veilige opslag van sleutels) en controllers voor NVMe en thunderbolt 4.

Pinnetjes

Als je een low-end microcontroller zoals een ATmega328P van een Arduino Uno ziet, is het eerste wat opvalt de pinnetjes die eruit steken. Elk van die pinnetjes heeft een functie. Sommige sluit je aan op een voeding, zodat de chip stroom krijgt, maar de meeste dienen om met de omgeving te communiceren.

Komt de chip in een dip-behuizing, dan kun je die pinnetjes eenvoudigweg in een breadboard prikken. Door dan jumperwires in een gaatje in dezelfde rij als een pin te steken, verbind je het draadje met die pin. Op die manier bouw je eenvoudig elektronische schakelingen op met componenten die met de microcontroller kunnen communiceren.

Een Arduino Uno-bordje is dan eigenlijk gewoon een printplaatje waarop de ATmega328P is geplaatst en alle pinnetjes verbonden zijn met ofwel de headers op het bordje, ofwel met andere componenten van het printplaatje, zoals de spanningsregelaar, statusleds en de resetknop. Je kunt het eigenlijk vergelijken met een moederbord voor een processor: een Arduino Uno maakt een ATmega328P-microcontroller alleen wat handiger om te gebruiken en om andere componenten op aan te sluiten.

©PXimport

De eenvoudigste manier om met een microcontroller te communiceren is wat we GPIO noemen (general-purpose input/output). Elke GPIO-pin kunnen we aansturen door een bit op een specifiek adres in het geheugen van de microcontroller op 1 of 0 te zetten. Schrijven we er 1 naar, dan wordt een spanning van bijvoorbeeld 5 V over de pin gelegd; schrijven we er 0 naar, dan wordt de spanning 0 V.

Als je dan bijvoorbeeld tussen die pin en 0 V een led en een weerstand plaatst, gaat de led aan wanneer je 1 naar de pin schrijft en uit wanneer je er 0 naar schrijft. Bij een 1 vloeit er immers een stroom van 5 V naar 0 V. De weerstand dient om de stroom te beperken tot wat de led aankan.

Ook in de andere richting werkt dat. Als je de GPIO-pin als invoer configureert, zal de microcontroller de spanning die je aan de pin aanlegt (5 V of 0 V) interpreteren als een 1 of 0. Op die manier sluit je een knop aan op de pin. Druk je de knop in, dan maakt die intern een verbinding tussen 5 V en de pin van de microcontroller, waardoor die een 1 registreert. 

Laat je de knop los, dan wordt er doorgaans via een pull-downweerstand voor gezorgd dat de pin verbonden is met 0 V en dus een 0 registreert. Op dezelfde manier sluit je een PIR-sensor voor aanwezigheidsdetectie aan: de pin registreert dan 1 als de sensor iemand waarneemt en anders 0.

Protocols en bussen

Telkens 1 bit in of uit de microcontroller sturen, is voldoende voor eenvoudige toepassingen, maar vaak heb je complexere vormen van communicatie nodig. Daarvoor zijn er allerlei protocollen ontwikkeld. Bijvoorbeeld UART (universal asynchronous receiver-transmitter), een protocol voor seriële communicatie waarbij je bytes in twee richtingen kunt sturen. 

Het protocol beschrijft hoe je de opeenvolgende bits moet sturen. Zo bestaan er UART-modules die je in een usb-poort van je pc kunt steken. Communiceren met de microcontroller doe je dan door de RX-pin van de microcontroller met de TX-pin van de UART-module te verbinden en andersom: RX staat voor receive en TX voor transmit.

Voor communicatie met meerdere componenten, zoals sensoren, externe geheugens en schermen, maak je meestal gebruik van een bus zoals I²C (Inter-Integrated Circuit, uitgevonden door Philips) en SPI (Serial Peripheral Interface). I²C wordt ook wel Two-Wire genoemd, omdat er twee pinnen worden gebruikt: SDA om de seriële data door te sturen en SCL om een kloksignaal te sturen. 

SPI (ook weleens Four-Wire genoemd) heeft vier pinnen: SCLK voor de klok, MOSI voor communicatie van de master (meestal de microcontroller) naar de slave en MISO voor de andere richting, en SS om te selecteren met welke slave de master spreekt. Voor elke slave heb je een extra pin SS nodig. Bij de meeste microcontrollers zijn er specifieke pinnen aanwezig voor UART, I²C en SPI.

©PXimport

Digitaal of analoog

Tot nu toe hebben we het alleen maar over 0 en 1 gehad, digitale gegevens dus. Maar heel wat sensoren geven analoge gegevens door, bijvoorbeeld een temperatuursensor of druksensor waarvan de weerstand varieert met de gemeten waarde. Met een spanningsdeler haal je uit die variabele weerstand een variabele spanning, die dus een analoge voorstelling van de meetwaarde is. 

Gelukkig bestaat er een component die een analoge waarde (bijvoorbeeld een spanning) kan omzetten naar een digitale waarde (bijvoorbeeld een 10bit-getal): de ADC (analoog-digitaalomzetter).

ADC’s bestaan als losse componenten (bijvoorbeeld via I²C of SPI aan te sluiten), maar veel microcontrollers hebben ook zelf een of meer ADC’S ingebouwd. Ook in de andere richting bestaat er een component: de DAC (digitaal-analoogomzetter) zet een digitale waarde (bijvoorbeeld een 10bit-getal) om in een analoge waarde (bijvoorbeeld een spanning van 0 tot de voedingsspanning).

Sommige microcontrollers hebben ook een DAC ingebouwd. Al met al zijn microcontrollers dus de perfecte componenten om de digitale en analoge wereld te verenigen. Een Raspberry Pi bijvoorbeeld heeft geen ADC ingebouwd, terwijl een Arduino-bordje er meerdere heeft.

Microcontroller-behuizingen Dezelfde microcontroller kun je vaak in meerdere types behuizingen kopen. Op breadboards zul je vaak DIP-behuizingen tegenkomen: dual in-line package. De chip zit dan in een rechthoekig blokje met aan twee tegenovergelegen zijden pinnetjes die naar onderen uitsteken. Standaard liggen de pinnetjes 2,54 mm (een tiende inch) van elkaar, waardoor ze op een breadboard passen.  In massaproductie vind je eerder varianten van QFP (quad flat package), waarbij een vierkante behuizing aan elke zijde een rij pinnetjes heeft, met een afstand van 0,4 tot 1 mm, die op de printplaat worden gesoldeerd. Een soortgelijke behuizing is QFN (quad-flat no-leads), waarbij er geen pinnetjes uitsteken maar er onderaan de chip aan de vier zijden rijen kopersporen zijn die rechtstreeks op de banen van de printplaat aansluiten. Deze zijn moeilijk met de hand te solderen.

Microcontrollerfamilies

Net zoals er voor pc’s allerlei processorfamilies bestaan, heb je ook diverse families van microcontrollers. De belangrijkste onderverdeling is op basis van de processorarchitectuur. Populair bij hobbyisten zijn de 8bit-AVR-microcontrollers van Atmel (in 2016 overgenomen door Microchip). Ze zijn onderverdeeld in twee subfamilies: de ATtiny-serie met minder pinnen, geheugen en functies (de basismodellen hebben zelfs geen ram-geheugen, UART, I²C en SPI) en de krachtigere ATmega-serie die in de meeste Arduino-bordjes zit.

Een familie die zowel bij hobbyisten als industriële ontwikkelaars populair is, zijn de PIC-microcontrollers, die al sinds 1976 meegaan. Hun populariteit is te danken aan hun lage kostprijs, brede beschikbaarheid en heel wat bestaande code.

Een andere populaire low-end microcontroller in de industrie is de 8051. Oorspronkelijk werd deze in 1980 door Intel ontwikkeld onder de naam MCS-51. In 2007 is Intel met de productie gestopt, maar tientallen andere chipfabrikanten produceren nog altijd hun eigen klonen van de 8051, vaak met een snellere klok en extra functies. Ze worden gebruikt in auto’s, meetsystemen, transceivers voor bluetooth, Zigbee en andere draadloze protocollen, in usb-sticks enzovoort.

©PXimport

Als je naar de krachtigere microcontrollers gaat, kom je bij 32- en 64bit-families uit. De laatste jaren hebben vooral de Xtensa-processors van Tensilica (in 2013 overgekocht door Cadence) een flinke opmars gemaakt. Het zijn immers de processors in de ESP8266- en ESP32-microcontrollers van het Chinese Espressif. Deze zijn populair bij hobbyisten door hun geïntegreerde wifi en (voor de ESP32) bluetooth, en omdat ze eenvoudig te programmeren zijn in de Arduino IDE of via frameworks als ESPHome. De bordjes gebouwd rond de microcontrollers van Espressif zijn dan ook populair voor doe-het-zelf-domotica.

Tot de krachtigste en flexibelste microcontrollers behoren die gebouwd rond de ARM-architectuur. De high-end versies daarvan vind je in je smartphone en ook in computerbordjes zoals een Raspberry Pi, al spreken we dan meer van een SoC. 

ARM kent veel subfamilies, maar voor de klassieke microcontrollertoepassingen zijn vooral de ARM Cortex-M-processors (32 bit) gebruikt. Die vind je bijvoorbeeld in de AT SAM-serie van Atmel die in de krachtigere Arduino-bordjes zitten, in de populaire STM32-familie van STMicroelectronics, en in de nRF-serie van Nordic Semiconductor voor draadloze toepassingen, zoals bluetooth en thread.

Ontwikkelbordjes

Voor industriële toepassingen wordt een printplaat op maat ontworpen, waarop een microcontroller staat. Maar wie zelf aan de slag wil met een microcontroller, heeft een ontwikkelbordje nodig. Dat geeft eenvoudig toegang tot de pinnen van de microcontroller via standaard pinheaders en voegt zaken zoals een spanningsregelaar en usb-naar-UART-omzetter toe, zodat je het bordje eenvoudig op je pc kunt aansluiten.

Voor elke microcontrollerfamilie bestaan er wel ontwikkelbordjes in allerlei vormen en groottes. Voor de AVR-familie zijn de Arduino-bordjes populair. Sommige daarvan, zoals de Arduino Nano, prik je op een breadboard, maar de meeste komen in een groter formaat met vrouwelijke pinheaders waarin je jumperwires steekt. 

Voor de Espressif-microcontrollers is het kleinere formaat dat je op een breadboard prikt alomtegenwoordig. Voor de nRF-serie heeft Nordic Semicondictor grote ontwikkelborden, maar ook versies in de vorm van een stick die je in de usb-poort van je pc schuift. Ook de BBC micro:bit en micro:bit v2 zijn leuke ontwikkelbordjes voor de nRF-microcontrollers.

©PXimport

Microcontroller programmeren

Kijken we tot slot nog even naar hoe het programmeren van een microcontroller werkt. Als je gewend bent om voor een pc of een computerbordje zoals een Raspberry Pi te programmeren, krijg je zeker een cultuurschok wanneer je voor het eerst een microcontroller programmeert. Doorgaans draait er immers geen besturingssysteem op een microcontroller. Er draait slechts één programma op: wat jij schrijft. 

Dat programma schrijf je in het ingebouwde flash-geheugen. Als je de stroom uitschakelt en weer inschakelt, begint de microcontroller het programma onmiddellijk uit te voeren. Dat maakt een microcontroller betrouwbaarder in werking dan een processorbordje zoals een Raspberry Pi.

De best ondersteunde programmeertalen op microcontrollers zijn C of C++, maar die zijn niet het toegankelijkst. Het Arduino-ecosysteem lost dat op door een standaardbibliotheek en allerlei uitbreidingen aan te bieden. Die vormen een laag bovenop het onderliggende C++. 

Andere oplossingen zijn MicroPython en CircuitPython die een afgeslankte versie van Python op microcontrollers aanbieden, en Espruino dat het mogelijk maakt om JavaScript op een microcontroller te gebruiken. Voor industriële toepassingen gebruik je eerder een realtime besturingssysteem zoals Zephyr, dat je in C programmeert.

Ontwikkelomgevingen

Om het proces van code programmeren en de firmware naar je microcontroller flashen te vereenvoudigen, bestaan er allerlei ontwikkelomgevingen. Die tonen bijvoorbeeld fouten in je code, compileren met één druk op een knop je code tot machinecode in de instructieset van de processor, en flashen de firmware naar je ontwikkelbordje. 

Programmeer je een Arduino-bordje, dan doe je dat doorgaans in de Arduino IDE (wat staat voor integrated development environment). Maar dankzij de ondersteuning van andere bordjes kun je met de Arduino IDE ook ESP8266- of ESP32-bordjes programmeren.

Ook populair is PlatformIO, een opensource-plug-in die van Microsofts ontwikkelomgeving Visual Studio Code een ontwikkelomgeving voor microcontrollers maakt. Het voordeel van PlatformIO is dat je met één ontwikkelomgeving voor diverse platforms en frameworks voor microcontrollers kunt ontwikkelen, inclusief Arduino, Espressifs framework en Zephyr. 

Visual Studio Code is bovendien ook bruikbaar om voor een Raspberry Pi of je pc te programmeren. Op deze manier verenig je dus al je programmeerprojecten in één omgeving.

▼ Volgende artikel
Wanneer is een tv écht te groot voor je woonkamer?
Huis

Wanneer is een tv écht te groot voor je woonkamer?

Iedereen droomt weleens van een thuisbioscoop, maar groter is niet altijd beter. Een te groot scherm kan bijvoorbeeld zorgen voor vermoeide ogen of korrelig beeld. Ontdek hoe zaken als kijkafstand, de resolutie en de kijkhoek bepalen of een televisie daadwerkelijk in je woonkamer past.

In de felverlichte showroom van de elektronicawinkel lijkt die enorme 75-inch televisie waanzinnig indrukwekkend, maar eenmaal aan de muur in een doorsnee Nederlandse doorzonwoning kan zo'n gapend zwart vlak de ruimte volledig domineren. Veel consumenten denken onterecht dat een groter scherm automatisch garant staat voor een betere kijkervaring, ongeacht de afmetingen van de kamer. Toch is er een harde technische grens waarbij groot verandert in té groot, met hoofdpijn en onscherp beeld als direct gevolg. In dit artikel leer je precies hoe je die grens bepaalt en de ideale televisie kiest.

De kern van het probleem: resolutie en blikveld

Het probleem van een te grote tv is niet alleen esthetisch, maar vooral fysiologisch en technisch. Het draait allemaal om de verhouding tussen de resolutie (het aantal beeldpunten) en je blikveld. Zelfs bij moderne 4K-televisies zijn de pixels niet oneindig klein. Als je een enorm scherm neemt en daar te dicht op zit, trek je het beeld als het ware uit elkaar. Hierdoor verliest het beeld zijn scherpte en samenhang; je hersenen moeten harder werken om de losse informatie tot één geheel te smeden.

Een veelgehoorde misvatting is dat je simpelweg went aan elk formaat. Hoewel de eerste shock van een groot scherm inderdaad verdwijnt, blijft de fysieke belasting overeind. Als een scherm meer dan 40 graden van je horizontale blikveld inneemt, kun je niet meer het hele plaatje in één oogopslag zien. Je ogen moeten dan constant van links naar rechts scannen om de actie te volgen, vergelijkbaar met het kijken naar een tenniswedstrijd vanaf de eerste rij. Dat zorgt voor vermoeide ogen en kan op den duur zelfs leiden tot misselijkheid, ook wel 'cybersickness' genoemd.

©Gorodenkoff

Wanneer werkt een groot formaat wél goed?

Er zijn specifieke scenario's waarin een wandvullend scherm niet alleen kan, maar zelfs de voorkeur heeft. Dat geldt vooral als je de televisie primair gebruikt voor hoogwaardige content. Denk hierbij aan films op 4K Blu-ray of streamingdiensten die uitzenden in de hoogste bitrate, en uiteraard gaming op moderne consoles. In deze gevallen is de bronkwaliteit zo hoog dat je dichterbij kunt zitten zonder fouten in het beeld te zien.

Daarnaast werkt een groot formaat goed als de kijkafstand het toelaat. In moderne woningen met een open plattegrond of een loft-indeling staat de bank vaak wat verder van de muur. Als je kijkafstand meer dan 3 meter is, valt een 55-inch televisie al snel in het niet en moet je turen om details te zien. Een 65-inch of groter model herstelt in dat geval de balans en zorgt voor die gewenste bioscoopervaring, waarbij het scherm groot genoeg is om je onder te dompelen zonder dat je individuele pixels ziet.

Wanneer werkt dit níet goed?

De nadelen van een te grote tv worden pijnlijk duidelijk bij 'gewoon' tv-kijken. Veel lineaire televisieprogramma's, zoals het journaal, talkshows of sportuitzendingen via de kabel, worden niet in 4K uitgezonden, maar in Full HD of zelfs nog lager. Een enorme tv vergroot dat signaal genadeloos uit. Op een te groot scherm zie je dan plotseling ruis, compressieblokjes en onscherpe randen die op een kleiner scherm onzichtbaar zouden blijven. Het beeld oogt daardoor onrustig en rommelig.

Ook in de fysieke ruimte kan het tegenvallen. Een tv die uit staat is een groot, zwart en reflecterend vlak. In een compacte woonkamer zuigt een te groot scherm alle aandacht naar zich toe, zelfs als hij uitstaat. Zoiets verstoort de balans in je interieur en kan de kamer kleiner laten aanvoelen dan hij eigenlijk is. Daarnaast is de plaatsing van sfeerverlichting vaak lastiger; een gigantisch scherm blokkeert lichtinval of reflecteert lampen op een storende manier.

©RDVector

Als je té dicht op je televisie zit, kun je de kleurenleds van elkaar onderscheiden.

Dealbreakers: hier ligt de grens

Er zijn een paar harde grenzen die aangeven dat je beter een maatje kleiner kunt kiezen. Als je een van de onderstaande punten herkent, is dat een duidelijk signaal.

Je moet je hoofd fysiek draaien

Als je tijdens het kijken naar een film ondertiteling leest en daardoor de actie boven in het scherm mist, of als je je nek daadwerkelijk moet draaien om van de linker- naar de rechterhoek te kijken, is het scherm te groot voor je kijkafstand. Je verliest het overzicht.

De tv past fysiek niet op het meubel

Dit klinkt misschien logisch, maar wordt vaak genegeerd. Als de pootjes van de tv net aan op de rand van je tv-meubel balanceren, of als het scherm breder is dan het meubel zelf, oogt dat niet alleen goedkoop, het is ook onveilig. Een scherm dat buiten de kaders van het meubel steekt, is enorm kwetsbaar voor (om)stoten.

Je ziet pixels of rastervorming

Ga op je favoriete plek op de bank zitten. Zie je bij normaal HD-beeld een soort hordeur-effect of individuele blokjes? Dan zit je te dichtbij voor dat specifieke formaat. Dat is geen kwestie van wennen; het is een mismatch tussen resolutie, inch-maat en kijkafstand.

Wat betekent dit voor jouw situatie?

Om te bepalen of een tv past, moet je de rolmaat erbij pakken en even kritisch naar je eigen kijkgedrag kijken. De algemene vuistregel voor 4K-televisies is: meet de afstand van je ogen tot het scherm in centimeters en deel dat door 1,2 tot 1,5. De uitkomst is de ideale schermdiagonaal.

Zit je bijvoorbeeld op 2,5 meter (250 cm) van je scherm? Dan kom je uit op een schermdiagonaal tussen de 166 cm (65 inch) en 208 cm (82 inch). Maar let op: dat geldt alleen voor pure 4K-content. Kijk je veel normale televisie (praatprogramma's, nieuws)? Hanteer dan factor 2. Bij 250 cm afstand kijkt een scherm van 125 cm diagonaal (ongeveer 50 inch) dan vaak prettiger en rustiger. Ben je een fanatieke gamer of filmfanaat? Dan kun je de grens opzoeken. Ben je een casual kijker? Kies dan veilig voor een formaatje kleiner.

©BS | ID.nl

In het kort

Een televisie is te groot wanneer het beeld onscherp oogt of wanneer je fysiek je hoofd moet draaien om alles te kunnen volgen. Hoewel een groot scherm indrukwekkend lijkt, vergroot het bij standaard televisie-uitzendingen ook alle beeldfouten uit. De ideale grootte is een balans tussen kijkafstand en de kwaliteit van wat je kijkt. Meet daarom altijd de afstand tussen bank en muur, en wees realistisch over je kijkgedrag. Zo voorkom je hoofdpijn en blijft tv-kijken ontspannend.

▼ Volgende artikel
Microsofts Xbox Developer Direct heeft de code gekraakt
Huis

Microsofts Xbox Developer Direct heeft de code gekraakt

Het is ergens in 2025 als Fable voor het eerst, een soort van, getoond wordt. Beelden volgen elkaar in rap tempo op. We zien de dame die de hoofdrol lijkt te spelen, geen HUD en vooral heel veel mooie filmpjes. Daarna begint het wild speculeren, de klachten over het hoofdpersonage, de vraagtekens over de gameplay. Gelukkig was daar gister de Xbox Developer Direct, waar Microsoft eens te meer bewees de code gekraakt te hebben.

Vóór de pandemie, toen de Electronic Entertainment Expo (E3) nog bestond en online showcases, Directs en State of Plays nog niet echt een ding waren, wisten gameboeren hun spellen prima te verkopen. Ontwikkelaars verschenen op het podium tijdens liveshows, praatten over hun games, speelden live een demo (wat net zo vaak goed als faliekant misging) en dergelijke presentaties werden afgewisseld met teasers, hypetrailers en (nog verder terug) zelfs weleens grafieken en verkoopcijfers. Hoe anders is de wereld anno nu.

Watch on YouTube

Trailers vol trailers

Klaar zitten voor The Game Awards, een gemiddelde Direct, Showcase of Summer Game Fest is leuk, maar niet hetzelfde als ‘toen’. Want de formule is inmiddels bekend. Een half uur, een uurtje, een paar uur lang wordt er de ene na de andere trailer op je hersenen afgevuurd. Wat is ‘reclame’ en wat niet? Geen idee. Standaard zijn de animegames die elkaar zo rap opvolgen dat de gemiddelde kijker niet eens meer weet waar de ene game begint en de ander ophoudt. Meestal zit er een klapper aan het begin, waarna het grote wachten op de klapper aan het einde begint.

Vraag iemand een week later wat ie gezien heeft, en meer dan de helft van de getoonde games is waarschijnlijk uit het geheugen verdwenen.  En al die flarden van beelden zonder fatsoenlijke uitleg leiden vaker wel dan niet tot hetzelfde als die ene soort van trailer van Fable: speculaties, wild geroep en vraagtekens. Het komt de online discussie rondom games niet ten goede.

©Playground Games

Hoe anders was de inmiddels traditionele Xbox Developer Direct. Langer dan een uur, voor maar vier games. Die games kregen zodoende alle tijd, net als de ontwikkelaars. Gameplaybeelden zijn niet aan te slepen, verscheidene modi worden uitgebreid besproken en zelfs de kleinste details krijgen meer dan genoeg ademruimte. Zo horen we tijdens de Forza Horizon 6-presentatie dat het nummer van je eigen hangar (78) gekozen is omdat de game zich afspeelt in Japan, en die cijfers daar een positieve lading hebben. Fijn om te horen hoe scherp het oog voor detail van een ontwikkelaar is. Dat zegt iets over het project. En het is ook iets wat je never nooit in een hypetrailer van anderhalve minuut langs had zien komen.

Trailers vol trailers

En dus zit ik gisteravond te genieten. Niet eens per se van de games, want ze vallen net niet in mijn straatje. Forza Horizon 6 vind ik héél indrukwekkend en de game zal ongetwijfeld miljoenen spelers perfect bedienen, maar ik ben niet zo van het racen. Game Freak - de makers van Pokémon die eindelijk hun vleugels uitslaan met graphics uit dit decennium - komen met Beast of Reincarnation. Het ziet er oké uit. Double Fine vindt in mij ook geen fan en een multiplayer-pottenbakgame (Kiln) is niet iets wat hoog op mijn lijstje stond. Zelfs afsluiter Fable wist me met z’n levenssimulaties ook niet te overtuigen. Maar, nogmaals, wat heb ik genoten. Van ontwikkelaars die ruim de tijd kregen. Van de games, die van alle kanten belicht werden. Van de antwoorden die we kregen.

©Playground Games

Want wat ik nou precies van die games vond, is niet eens zo heel belangrijk. Veel belangrijker is dat iedereen dit keer in ieder geval een uitgebreid beeld kreeg van wat deze games nu precies worden. Een Xbox Developer Direct creëert geen valse hype. Van die vier getoonde games, weten we nu eigenlijk alles wat we redelijkerwijs moeten weten. Zoals bijvoorbeeld dat Fable een character creation-modus heeft, om maar iets te noemen. En plots zie je de discussies rondom de games gaan om… de inhoud. En niet op wilde speculaties rondom hoofdpersonages die helemaal niet vast blijken te staan. Love it.