ID.nl logo
Kernfusiecentrales: fusie of illusie?
© Getty Images/iStockphoto
Energie

Kernfusiecentrales: fusie of illusie?

Voordat we aan onze energiebehoefte kunnen voldoen met de vrijwel onuitputtelijke energiebron die kernfusie heet, dienen we nog heel wat harde noten te kraken. Het is allesbehalve eenvoudig energie op te wekken uit kernfusie.

In dit artikel leggen we je uit wat de uitdagingen van kernfusie zijn.

Op 1 november 1952 explodeerde op de Enewetak Atoll in de Stille Oceaan ‘s werelds eerste waterstofbom, Ivy Mike genaamd. Met een kracht van een kleine 12 megaton vertegenwoordigde de klap zo’n 750 Hiroshima-bommen. Voor de natuurkundigen die het monster ontworpen hadden, moet dit een opluchting zijn geweest, want of een waterstofbom echt zou werken, wist tot op dat moment niemand. 

Het idee was simpel genoeg. In een ‘gewone’ atoombom wordt een zwaar, radioactief materiaal – zoals plutonium – korte tijd zodanig samengeperst dat het uiteenvalt in lichtere elementen. Daarbij komt volgens Einsteins bekende formule E=MC2 heel veel energie vrij. In een waterstofbom (tegenwoordig meestal ‘thermonucleair wapen’ genoemd) wordt juist een heel licht materiaal – waterstof – extreem samengeperst, waardoor de atomen ‘fuseren’ tot zwaardere elementen. Hierbij komt nog véél meer energie vrij. Kernfusie is ook het proces dat al miljarden jaren lang de zon op gang houdt. Wanneer we het op aarde zouden kunnen toepassen voor het opwekken van energie, dan zouden we een flinke stap zetten in de richting van het emissieloze tijdperk. 

Met kernsplijting is dat allang gelukt. In 1954 opende in de Russische stad Obninsk nabij Moskou de eerste kernsplijtingscentrale zijn deuren. Dat de Hiroshima-bom zo gemakkelijk kon worden doorontwikkeld tot een nuttige bron van energie, kwam omdat de zogeheten kettingreactie zich eenvoudig liet temmen. In een kettingreactie produceren splijtende atomen neutronen, die vervolgens andere atomen doen splijten totdat alle atomen op zijn. In een atoombom gebeurt dit in een oogwenk. Maar wanneer je een deel van de neutronen met absorberende stoffen weet te vertragen, kan het proces jarenlang voortduren. Dit is wat er gebeurt in een kernreactor. 

Andrej Sacharov 

Kernfusie werkt echter totaal anders. Lichte atomen fuseren tot zwaardere wanneer ze tot zeer hoge temperaturen worden opgezweept. In Ivy Mike werd een vat vloeibare waterstof blootgesteld aan een conventionele atoombom. De enorme druk en hitte die daarbij optrad, deed de waterstof fuseren tot helium. Overigens werd er geen gewone waterstof gebruikt, maar de waterstofisotopen deuterium en tritium. Deuterium maakt van nature ongeveer 0,015 procent van ons drinkwater uit. Tritium is een radioactieve vorm van waterstof die kan worden gemaakt uit lithium. 

Ivy Mike geldt als de aartsvader van alle thermonucleaire wapens. De energiesector had er echter niets aan. Je kunt immers niet steeds een atoombom laten ontploffen om je fusiereactie op gang te brengen. Er moest een andere manier worden gevonden om deuterium tot fusie te dwingen. 

En zo begon het grote zoeken. Het was de bekende Russische atoomgeleerde (en dissident) Andrej Sacharov die besefte dat een continu proces van kernfusie alleen zou kunnen werken wanneer het in bedwang wordt gehouden door een krachtig magneetveld – een concept dat magnetische opsluiting wordt genoemd. De reden is simpel: geen enkel materiaal is bestand tegen de temperaturen waar fusie mee gepaard gaat. Anderzijds stopt een fusiereactie meteen wanneer het gloeiendhete plasma (het mengsel van losse atoomkernen en elektronen) in contact komt met de veel koelere wand van het reactorvat. Magneetvelden kunnen deze problemen oplossen – althans in theorie. 

Een alternatieve methode heet traagheidsopsluiting. Hierbij wordt een mengsel van deuterium en tritium opgesloten in een piepklein bolletje, dat vervolgens aan alle kanten beschoten wordt door krachtige lasers. De plotselinge druk die daarbij optreedt, is groot genoeg om fusie te bewerkstelligen. Herhaal deze procedure tientallen keren per seconde en je hebt een bruikbare kernfusiereactor – althans in theorie. 

©Evgen3d - stock.adobe.com

De binnenkant van een kernfusiereactor

Helium-3 

Na decennia van onderzoek lijkt magnetische opsluiting de beste kaarten te hebben. Afgelopen februari werd in het Engelse Culham een belangrijke stap voorwaarts gezet. In de kernfusiereactor JET (Joint European Torus) wisten onderzoekers vijf seconden lang een fusiereactie in stand te houden met een vermogen van zo’n 11 megawatt – het equivalent van vier fikse windmolens. 

Dat dit resultaat de aanleiding vormde voor een juichend persbericht, schetst precies het probleem: vijf seconden. In een praktische kernfusiecentrale dien je de reactie minstens urenlang op gang te houden. De bedoeling is dat dit gaat lukken in de opvolger van de JET: de ITER (International Thermonuclear Experimental Reactor) in Zuid-Frankrijk, die rond 2035 operationeel moet zijn. 

Voordat we ons kunnen laven aan de vrijwel onuitputtelijke energiebron die kernfusie is, zullen we ook nog andere harde noten moeten kraken. Fusie met deuterium en tritium heeft als nadeel dat daar een heleboel neutronen bij vrijkomen. Die neutronen tasten de reactorwand aan en maken deze op den duur radioactief. Vandaar dat er ideeën leven voor fusieprocessen die met andere stoffen werken. Helium-3 wordt vaak genoemd, een isotoop die – spannend genoeg – gewonnen kan worden op de maan. Het probleem van deze alternatieven is dat ze nóg extremere omstandigheden vereisen om de fusie op gang te brengen. 

Eeuwige belofte 

Een andere heikele kwestie is dat het erg veel stroom kost om een kernfusiereactor op gang te houden. De elektromagneten die het plasma insluiten, zijn uiterst dorstig. Bij traagheidsopsluiting geldt hetzelfde voor de lasers. Daarbij is het nog maar de vraag hoe effectief de energie uit het fuserende plasma kan worden afgetapt. De wetten van de thermodynamica zijn onverbiddelijk: bij elke omzetting van energie gaat een deel van de energie verloren. En in een kernfusiecentrale zijn er nogal wat van zulke processen gaande. ITER moet gaan bewijzen dat een fusiereactor onderaan de streep daadwerkelijk elektriciteit kan leveren. 

Cynici noemen kernfusie wel de belofte die altijd dertig jaar in de toekomst zal liggen. Dat zou jammer zijn, want daarvoor is de deze manier om energie op te wekken potentieel veel te aantrekkelijk. De vraag is wel reëel of kernfusie qua kostprijs ooit zal kunnen concurreren met andere energiebronnen – ITER is vooralsnog angstaanjagend duur. Volgens Elon Musk zitten we sowieso op een dwaalspoor, want in zijn ogen hebben we die fusiereactor allang: ‘… kijk, daar hangt hij in de lucht. We hoeven er alleen maar de energie van af te tappen’.

©John D. - stock.adobe.com

Fusie met deuterium en tritium heeft als nadeel dat daar een heleboel neutronen bij vrijkomen; die tasten de reactorwand aan en maken deze radioactief 

Wil jij jouw huis verduurzamen?

Vraag een offerte aan voor verduurzaming:

▼ Volgende artikel
Waar voor je geld: 5 betaalbare smartphones voor minder dan 300 euro
Huis

Waar voor je geld: 5 betaalbare smartphones voor minder dan 300 euro

In de rubriek Waar voor je geld gaan we op zoek naar producten waar je niet de hoofdprijs voor betaalt. Een aantal keer per week geven we je een overzicht van deze producten. Dit keer: vijf moderne smartphones die voor minder dan 300 euro in de winkel liggen.

Een nieuwe smartphone hoeft niet duur te zijn. Wie goed zoekt, vindt voor minder dan 300 euro verrassend complete toestellen met scherpe schermen, snelle hardware en degelijke camera’s. In dit overzicht vind je vijf recente smartphones die binnen dit budget vallen. Ze bieden elk hun eigen balans tussen prestaties, opslagruimte en accuduur. De één blinkt uit in schermkwaliteit, de ander juist in snelheid of camera-opties. Hieronder lees je wat je van elk toestel kunt verwachten, zonder poespas of verkooppraatjes.

Samsung Galaxy A56

Met de Galaxy A56 richt Samsung zich op gebruikers die een groot scherm en snelle 5G-connectiviteit willen zonder de prijs van een topmodel. Dit toestel heeft een 6,7-inch Super AMOLED-scherm met een resolutie van 1080 × 2340 pixels. Binnenin draait een Samsung Exynos-processor met 8 GB werkgeheugen en 128 GB opslag, uitbreidbaar via een geheugenkaart. De hoofdcamera heeft een resolutie van 50 megapixel, aangevuld met ultragroothoek- en dieptesensoren. De batterij van 5000 mAh ondersteunt 25 W snelladen. Het toestel werkt met Android 14 en biedt ondersteuning voor dual-sim en 5G-netwerken.

Energy Label B
Specificaties

Schermgrootte: 6,7 inch
Soort scherm: Super AMOLED
Werking op volle accu:
44u34min
Aantal megapixels:
50
Opslag:
128 GB

OPPO Reno 12 5G

De Reno 12 heeft een afgerond OLED-scherm van 6,7 inch met een verversingssnelheid van 120 Hz. Het toestel draait op de MediaTek Dimensity 7300-processor met 12 GB RAM en 256 GB opslagruimte. De hoofdcamera telt 50 megapixel en wordt bijgestaan door een ultragroothoek- en dieptecamera. De batterij heeft een capaciteit van 5000 mAh en ondersteunt 80 W snelladen via USB-C. Deze telefoon draait op Android 14 met ColorOS. Het toestel ondersteunt 5G, dual-sim en Wi-Fi 6, en beschikt over een vingerafdrukscanner onder het scherm.

Energy Label F
Specificaties

Schermgrootte: 6,7 inch
Soort scherm:
OLED
Werking op volle accu:
niet opgegeven
Aantal megapixels:
50 MP
Opslag:
256 GB

Motorola Edge 50 Neo

De Motorola Edge 50 Neo beschikt over een 6,55-inch P-OLED-display met een resolutie van 2400 × 1080 pixels en een verversingssnelheid van 120 Hz. Binnenin zit de Qualcomm Snapdragon 7s Gen 2, gekoppeld aan 12 GB RAM en 512 GB interne opslag. De hoofdcamera heeft een 50-megapixelsensor met optische beeldstabilisatie, de tweede lens is een 13-megapixel ultragroothoek. De batterij heeft een capaciteit van 5000 mAh en ondersteunt 68 W snelladen. De telefoon draait op Android 14 en heeft 5G, NFC en dual-sim.

Energy Label A
Specificaties

Schermgrootte: 6,5 inch
Soort scherm: P-OLED
Werking op volle accu:
50u44m
Aantal megapixels:
50 MP
Opslag:
512 GB

Samsung Galaxy A16

De Galaxy A16 is een toestel met een 6,5-inch PLS-LCD-scherm met een resolutie van 1600 × 720 pixels. De telefoon werkt met de MediaTek Helio G85-processor en 4 GB werkgeheugen, met 128 GB opslag. De camera achterop bestaat uit drie lenzen, waarvan de hoofdcamera 50 megapixel heeft. De batterij van 5000 mAh ondersteunt 15 W snelladen. Het toestel draait op Android 14 met One UI. De telefoon heeft een 3,5-mm-aansluiting en ruimte voor twee simkaarten.

Energy Label B
Specificaties

Schermgrootte: 6,5 inch
Soort scherm: LCD
Werking op volle accu:
43u30m
Aantal megapixels:
50 MP
Opslag:
128 GB

Xiaomi Redmi Note 14 5G

De Redmi Note 14 5G heeft een 6,6-inch AMOLED-scherm met een verversingssnelheid van 120 Hz. Binnenin zit de Snapdragon 4 Gen 2-chip, samen met 8 GB RAM en 256 GB opslagruimte. De hoofdcamera aan de achterkant heeft 108 megapixel, terwijl de frontcamera 16 megapixel levert. De batterij van 5000 mAh ondersteunt 33 W snelladen via USB-C. Het toestel biedt ondersteuning voor 5G, Bluetooth 5.3, NFC en een infraroodzender. Android 14 met MIUI vormt de softwarebasis.

Energy Label D
Specificaties

Schermgrootte: 6,6 inch
Soort scherm:
AMOLED
Werking op volle accu:
38u56m
Aantal megapixels:
108 MP
Opslag:
256 GB

▼ Volgende artikel
LG komt met 6K-monitor
Huis

LG komt met 6K-monitor

LG heeft een nieuwe monitor aangekondigd voor creatieve professionals: de UltraFine evo 6K (model 32U990A). Dit scherm valt op als de eerste 6K-monitor met Thunderbolt 5-ondersteuning en richt zich op gebruikers die werken met zware videoprojecten, grafisch ontwerp of andere veeleisende taken.

De 32U990A heeft een resolutie van 6.144 bij 3.456 pixels en een pixeldichtheid van 224 PPI. Dat zorgt voor bijzonder scherpe tekst en een hoge detailweergave. Volgens LG is het scherm in de fabriek gekalibreerd voor consistente kleuren binnen macOS. De monitor dekt bijna de volledige DCI-P3- en Adobe RGB-kleurruimte, wat hem geschikt maakt voor foto- en videobewerking en drukwerk. Ook voldoet hij aan de VESA DisplayHDR 600-standaard, wat zorgt voor een goede helderheid en kleurechtheid. Daarnaast heeft LG een Studio Mode toegevoegd, met drie kleurprofielen die speciaal zijn bedoeld voor Mac-gebruikers.

De UltraFine evo 6K biedt 2,5 keer zoveel pixels als een 4K-scherm, en wie twee van deze monitoren naast elkaar gebruikt, krijgt bijna vijf keer zoveel werkruimte. Via Thunderbolt 5 kunnen gebruikers bovendien eenvoudig meerdere schermen koppelen. De monitor kan ook dienen als hub, met ingebouwde KVM-switch en diverse aansluitingen, waarmee snel tussen Mac- en Windows-systemen kan worden gewisseld.

Dankzij de Thunderbolt 5-ondersteuning haalt de monitor overdrachtssnelheden tot 120 Gbps, drie keer sneller dan Thunderbolt 4. Dat maakt hem geschikt voor het werken met zware 8K-RAW-bestanden en real-time 4K-rendering. Het ontwerp is strak en vrijwel randloos, en het scherm kan in hoogte worden versteld of verticaal worden gedraaid – handig voor wie veel met verticale content werkt. Er zijn minder kabels nodig, wat zorgt voor een opgeruimde werkplek.

“Nu veel videomakers meerdere projecten tegelijk beheren, is de behoefte aan ultrahoge resolutie, nauwkeurige kleuren en snelle verbindingen groter dan ooit,” zegt YS Lee, hoofd van de IT-divisie van LG Media Entertainment Solution Company. “Met de UltraFine evo 6K bieden we een toekomstbestendig scherm van compromisloze kwaliteit, waarmee professionals sneller, slimmer en beter kunnen werken.”

Beschikbaarheid en prijzen

De LG UltraFine evo 6K-monitor wordt in oktober in Europa en de VS uitgebracht, maar een adviesprijs is nog niet bekendgemaakt.