ID.nl logo
Opstarten in uefi: alternatieve boot-methodes
© Reshift Digital
Huis

Opstarten in uefi: alternatieve boot-methodes

Al lange tijd worden nieuwe pc’s en laptops uitgerust met een ‘uefi’ in plaats van de ouderwetse bios. Het argument ‘veiligheid’ wordt echter onterecht gebruikt om het opstarten van een cd of usb-stick (met bijvoorbeeld GParted, malwareherstel of Linux-distributie) moeilijk te maken. In dit artikel lees je waarom dat zo is en hoe je alsnog kunt booten zoals jij dat wilt.

Wat is uefi?

Voordat we daadwerkelijk beginnen, kan het geen kwaad wat termen door te nemen. Uefi staat voor ‘unified extensible firmware interface’ en is als het ware een eigen besturingssysteem voor de computer. Het klassieke bios (basic input/output system) is firmware, maar de uefi ligt tussen de firmware en het besturingssysteem in. Uefi en bios kunnen naast elkaar bestaan op dezelfde computer. Vroeger was er ook efi (extensible firmware interface). Dat werd ontwikkeld door Intel, maar sinds 2005 doet Intel mee aan het UEFI Forum: een consortium van bedrijven uit de computerindustrie dat de uefi verder ontwikkelt. Uefi is ‘unified’ omdat het geheel softwaregebaseerd is: eerder werd het bios voor elke chip apart gecompileerd, uefi is een stuk generieker.

In dit artikel duiken we in de wereld van uefi. Elke pc of laptop wordt vandaag de dag met een uefi geleverd. Het is een verandering die voor sommige gebruikers heel plotseling lijkt te zijn veranderd. Er is veel positiefs aan de uefi: de basisinstellingen van de pc zijn eenvoudiger te bedienen, er is meer functionaliteit en de pc start er sneller door op.

Nadelen zijn er helaas ook: zo is het voor gebruikers wat lastiger en ingewikkelder geworden om vanaf andere media op te starten, bijvoorbeeld vanaf een usb-stick. Veel pc-fabrikanten hebben hun uefi dusdanig dichtgetimmerd dat dat niet zomaar mogelijk is. Bovendien is de situatie ingewikkelder geworden vanwege achterwaartse compatibiliteit, waardoor je alsnog vanaf het bios kunt starten in een uefi-omgeving.

In dit artikel bekijken we hoe het opstarten vanaf de uefi precies werkt met usb-sticks, hoe en waarom het is dichtgetimmerd. En we gaan deze kennis ook praktisch toepassen om op te starten met alternatieve media.

01 Uefi-boot

Op het moment dat de pc start, gaat de uefi-bootmanager aan de slag. Deze kijkt naar de bootconfiguratie en laadt de firmware-instellingen in het geheugen. Daarna wordt de kernel van het standaardbesturingssysteem gestart. In de firmware-instellingen, die opgeslagen liggen in het nvram, staat het pad van het efi-bestand dat gestart moet worden. Nvram staat overigens voor non-volatile random-access memory, dat aanwezig is op het moederbord. Non-volatile houdt in dat de data in het geheugen bewaard wordt, ook als de stroom eraf wordt gehaald.

De opstartbestanden staan op een efi-partitie, ook wel de ESP (efi system partition) genoemd. Zo’n partitie is een simpele fat32-partitie en heeft een mapje voor elk besturingssysteem dat op de pc staat. Elke map bevat één efi-bestand, aangemaakt door het geïnstalleerde besturingssysteem. Zo’n efi-bestand wordt gemaakt in een uefi-programmeertaal die veel lijkt op de taal C en dat bestand start het daadwerkelijke besturingssysteem.

Het voordeel van de uefi is dat het automatisch nieuwe uefi-bootdoelen kan detecteren. Op die manier kun je eenvoudig opstarten vanaf andere media. Om die functionaliteit mogelijk te maken, maakt uefi gebruik van standaardpaden om de bootloader te definiëren. Zo’n pad en bestandsnaam is bijvoorbeeld /efi/boot/boot_x64.efi voor een 64bit-systeem en voor de ARM-architectuur zou het bestand bootaa64.efi heten.

Vooral aan het begin van de introductie van de uefi ontstonden er weleens opstartproblemen. Elke bootloader had namelijk zijn eigen problemen of eigenaardigheden. Zo maakte Windows 7 bijvoorbeeld een nieuwe fat32-ESP, zelfs al was er een bestaande met fat16. Daarna mislukte de installatie. Veel Linux-distributies maakten vroeger een fat16-ESP aan. Bovendien hadden Ubuntu 11.04 en 11.10 een serieuze bug waarbij de ESP soms per ongeluk leeg werd gemaakt.

Bij het booten is nog één term van belang: CSM, dat staat voor compatibility support module en het biedt ondersteuning voor legacy-booten door ondersteuning voor het bios te bieden. Je kunt CSM alleen inschakelen als de optie Secure Boot uitstaat, maar daarover in paragraaf 3 meer.

©PXimport

02 Gpt

Gpt, oftewel de ‘guid partition table’, vervangt het oude mbr (master boot record), de manier waarop vroeger schijven werden ingedeeld. De gpt is een onderdeel van de uefi. Sinds Windows Vista kan Windows kan alleen van gpt-schijven in uefi opstarten. De partition header van een gpt-schijf bevat informatie over welke blokken gebruikt kunnen worden op de schijf. Ook bevat deze header de ‘guid’ van de schijf: de general unique identifier, een uniek identificatienummer. Een gpt-schijf kan basic of dynamic zijn, net als bij het mbr. Gpt ondersteunt tot 128 partities en het maakt automatisch een back-up van de gpt-partitietabel.

Het probleem met het master boot record was dat het niet meer van deze tijd was: schijven groter dan 2 TB konden niet gestart worden bijvoorbeeld. Gpt biedt ondersteuning voor schijven tot een grootte van 9,4 ZB. Dat zijn zetabytes, oftewel 9,4 x 10^21. Overigens bevat de gpt in het allereerste blok nog wel een mbr voor compatibiliteitsredenen. Deze zit in blok 0. In blok 1 zit de gpt-header en in de rest zijn de partities aanwezig.

©PXimport

03 Secure Boot

Secure Boot is een onderdeel van uefi en is bedoeld om malware die de firmware aanvalt tegen te houden. Zulke malware is erg naar, want die kan namelijk een herinstallatie van het besturingssysteem overleven doordat die zich in de firmware nestelt. Het principe van Secure Boot is erg eenvoudig: alleen binary’s (bestanden met alleen code) die ondertekend zijn door een vertrouwde partij worden opgestart. Malware kan in theorie niet ondertekend worden, dus daarmee wordt malware dan geblokkeerd. Bedrijven kunnen hun uefi-binary door Microsoft laten ondertekenen. In de meeste uefi’s zijn de publieke sleutels van Microsoft aanwezig. Als een bedrijf zijn binary laat ondertekenen, dan gebeurt dit dus met Microsofts privésleutel, zodat de firmware die binary herkent en start.

Ubuntu zag de bui al hangen en heeft dus zijn binary’s maar laten ondertekenen door Microsoft. Daarom kun je sinds 2012 Ubuntu gebruiken op uefi-systemen. Indien je een Linux-distributie wilt gebruiken die niet ondertekend is, dan kun je of Secure Boot uitzetten in de uefi of je kunt zelf eigen sleutels installeren in je uefi. Uiteindelijk wordt voor Secure Boot gewoon een public-private key-architectuur gebruikt en dus kun je dan de publieke sleutel van de binary installeren, waarna die wel gewoon gestart kan worden.

©PXimport

04 Secure Boot uitschakelen

Als je een Linux-distributie wilt opstarten vanaf een usb, kun je het dus eerst proberen met Secure Boot aan, aangezien een aantal Linux-distributies daar gewoon mee werken. Als dat niet lukt, is het de eenvoudigste optie om Secure Boot maar uit te zetten. Hoe je dat precies doet, verschilt per pc-fabrikant. Bij sommige pc’s zal de procedure bovendien lastiger of zelfs in zijn geheel onmogelijk zijn dan bij andere.

Om het toch te proberen, ga je in de uefi en zoek je naar de optie genaamd Secure Boot. Om in de uefi te komen, klik je in Windows 10 op de startknop, daarna op het tandwiel (de optie Instellingen) en tot slot op Opnieuw opstarten met de Shift-toets ingedrukt. Eenmaal opnieuw gestart verschijnt er een Windows-scherm en ga je naar Problemen oplossen / Geavanceerde opties / Instellingen voor UEFI-firmware / Opnieuw opstarten. De Secure Boot-opties vind je vaak onder het menu Boot of onder Windows Configuration Options.

Een andere manier om in de uefi te komen is net als vroeger om in het bios te komen: om tijdens het opstarten te drukken op sneltoetsen als Esc, F2, Delete enzovoort. De exacte toets verschilt per fabrikant.

Sommige fabrikanten bieden tooltjes aan waarmee je de uefi-instellingen via Windows kunt wijzigen. Dat is een stuk eenvoudiger, dan kun je misschien rustiger eens rondkijken met de handleiding van je moederbord ernaast.

©PXimport

05 Maak handmatig een opstartbare uefi-schijf

Je kunt op twee manieren een opstartbare usb-schijf maken: met een tooltje of zonder. Het tooltje behandelen we in paragraaf 6, maar dit zou geen masterclass zijn als we niet eerst handmatig aan de slag gaan. Sluit je usb-schijf aan. Open vervolgens in Windows 10 de PowerShell met admin-rechten en typ dan diskpart en list disk. Onthoud het schijfnummer van je usb-stick en typ bijvoorbeeld select disk 5. Typ clean om de schijf te legen. Zie je bij Gpt in de tabel die getoond wordt na de opdracht list disk een sterretje bij je usb? Typ dan convert mbr. Daarna typ je de opdrachten:

create partition primaryformat fs=fat32 quickactiveassignexit

Vooral het active-commando is belangrijk: dat markeert de schijf als opstartbaar. Daarna kopieer je de bestanden vanuit een iso-bestand naar je usb-stick. Dat kan dus zijn vanuit de Windows-iso, maar ook een Linux-iso. Om te verifiëren dat je schijf goed gaat werken, check even of er een map /efi/boot aanwezig is met een efi-bestand erin.

©PXimport

06 Opstartbare uefi-schijf met een tooltje

Er zijn diverse handige tooltjes om een opstartbare uefi-usb-stick of -schijf te maken. De eerste is de Windows 10-downloadtool van Microsoft. Daarmee kun je of een iso of meteen een opstartbare usb-stick maken. Voor Linux kun je gebruikmaken van een tool als Rufus of Win32DiskImager. Veel Linux-distributies leveren ook een iso-bestand dat je direct naar de schijf weg kunt schrijven, waarna die automatisch opstartbaar wordt. Daarvoor gebruik je dd-modus. Zorg ervoor dat je in Rufus kiest voor de uefi-computerindeling met een gpt-schijf.

©PXimport

07 Bootmenu

Het belangrijkste is nu natuurlijk om het uefi-bestand van deze schijf te starten. Zoals altijd: de methode verschilt per moederbord. Vaak zie je het na het starten meteen de tekst om het bootmenu te openen, vaak is dat iets als F1, F2, F11, F12, Delete of Esc (let op dat je toets kiest waarmee je het bootmenu opent en niet in de uefi opstart). Eenmaal in het bootmenu zie je de usb-stick in de lijst staan en kun je deze selecteren en starten. Wil je nu niet steeds handmatig op een toets willen drukken, dan kun je natuurlijk ook de opstartvolgorde wijzigen. Daarvoor start je wel in de uefi op en zoek je naar de bootvolgorde. Het is dan een kwestie van usb bovenaan zetten.

©PXimport

▼ Volgende artikel
Wat doet 120 Hz voor je televisie of monitor, en heb je het wel echt nodig?
© ER | ID.nl
Huis

Wat doet 120 Hz voor je televisie of monitor, en heb je het wel echt nodig?

Als je de specificatielijst van een moderne televisie of monitor bekijkt, zie je achter het kopje 'verversingssnelheid' vaak een getal staan gevolgd door 'Hz'. Jarenlang was 50 of 60 Hz de standaard, maar tegenwoordig pronken fabrikanten met 100, 120 of zelfs 144 Hz. Klinkt sneller, en sneller is meestal beter, maar wat betekent het nou eigenlijk voor jouw kijkervaring? Is het een noodzaak voor iedereen, of vooral leuk voor fanatieke gamers?

Om te begrijpen wat die Hertz (Hz) doet, moet je een televisie of monitor niet zien als een statisch schilderij, maar als een soort digitale flipbook. Het beeld dat je ziet, wordt immers continu opnieuw opgebouwd. Een standaard 60Hz-scherm ververst het beeld 60 keer per seconde. Dat is voor het menselijk oog snel genoeg om een vloeiende beweging waar te nemen bij normaal tv-kijken, zoals het nieuws of een dramaserie. Een 120Hz-scherm doet dat dus dubbel zo vaak: 120 keer per seconde.

©DC Studio

Waarom zou je meer beelden per seconde willen?

Het grootste voordeel van een hogere verversingssnelheid is soepelheid. Hoe meer beelden er per seconde worden getoond, hoe vloeiender bewegingen eruitzien. Bij 60 Hz kunnen snelle acties soms wat schokkerig ogen of last hebben van bewegingsonscherpte, ook wel 'motion blur' genoemd. Bij 120 Hz blijven details scherp, zelfs als de camera snel draait of als er bijvoorbeeld een raceauto voorbij raast. Daarnaast voelt de besturing van games directer aan. Tussen het moment dat je een knop indrukt en het moment dat je actie op het scherm ziet, zit minder tijd. Dat verschil in milliseconden lijkt verwaarloosbaar, maar je brein pikt het direct op als een responsievere ervaring.

Het verschil tussen 120 en 144 Hz (en hoger)

Terwijl 120 Hz de nieuwe gouden standaard is voor televisies, zie je bij computermonitors vaak getallen als 144 Hz, 165 Hz of zelfs 240 Hz en hoger. Het principe blijft hetzelfde, maar de toepassing verschilt. 120 Hz is de limiet voor de huidige generatie spelcomputers, zoals de PlayStation 5 en Xbox Series X. Televisies richten zich daarom specifiek op dat getal. Pc-gamers hebben echter vaak krachtiger videokaarten die nóg meer beelden per seconde kunnen produceren. Daarom zie je monitors met 144 Hz of meer.

Is het verschil tussen 120 en 144 Hz zichtbaar? Voor de gemiddelde gebruiker nauwelijks. Waar de stap van 60 naar 120 Hz een wereld van verschil is die bijna iedereen direct ziet, is de stap naar 144 Hz of hoger vooral voer voor professionele e-sporters die elke mogelijke fractie van een seconde winst nodig hebben. Voor de consument die een monitor zoekt voor thuisgebruik en gaming, is alles boven de 120 Hz doorgaans een uitstekende keuze.

©ER | ID.nl

Heb jij het nodig?

Het antwoord op die vraag hangt volledig af van wat je met je scherm doet; of dat nu een tv of een gamemonitor is. Kijk je voornamelijk lineaire televisie, films en series via streamingdiensten? Dan is een 120Hz-scherm geen harde noodzaak, aangezien films doorgaans in 24 beelden per seconde worden geschoten. Toch hebben 100/120Hz-panelen in televisies vaak wel een betere beeldkwaliteit en kunnen ze die films rustiger weergeven dan goedkopere 60Hz-panelen.

Ben je echter een gamer? Dan is het antwoord volmondig ja. De nieuwste spelcomputers en moderne videokaarten zijn gemaakt om die hoge snelheden te benutten. Games spelen soepeler, zien er scherper uit tijdens actiescènes en je reageert sneller op wat er gebeurt. Als je nu een nieuwe tv of monitor koopt met het oog op de toekomst en gaming, is 120 Hz of hoger eigenlijk een vereiste op je wensenlijstje. Let er bij televisies wel op dat je beschikt over een HDMI 2.1-aansluiting, want alleen die kabel kan de enorme hoeveelheid data van 4K-beeld met 120 Hz verwerken.

Drie tv's met 120 Hz of meer

De meeste high-end tv's van dit moment ondersteunen 120 Hz voor spelcomputers (PS5/Xbox Series X) en gaan zelfs tot 144 Hz als je ze aan een krachtige gaming-pc hangt.

Als we kijken naar de huidige generatie televisies, kunnen we niet om de LG OLED evo C5 heen. Dit is de gloednieuwe opvolger van de populaire C4 en wordt gezien als de standaard voor gamers en filmliefhebbers. Hij beschikt over vier HDMI 2.1-poorten die de volle 144 Hz ondersteunen, wat hem toekomstbestendig maakt voor pc-gamers, terwijl hij naadloos samenwerkt met de PlayStation 5 en Xbox Series X op 120 Hz. Het nieuwe paneel heeft een nog hogere helderheid dan zijn voorganger, waardoor HDR-beelden nog meer impact hebben.

Daarnaast is de Samsung OLED S95F een absolute blikvanger in de winkels. Waar Samsung vorig jaar hoge ogen gooide met de S95D, doet de F-serie er nog een schepje bovenop met een vernieuwde antireflectielaag die nog beter werkt in lichte kamers. Dit model combineert de diepe zwartwaarden van OLED met de intense kleuren van Quantum Dots. Ook dit scherm ondersteunt verversingssnelheden tot 144 Hz en beschikt over de uitgebreide Gaming Hub van Samsung, waarmee je zelfs zonder console games kunt streamen.

Voor wie liever geen OLED wil, is de Samsung Neo QLED QN90F de meest courante keuze in het high-end lcd-segment. Dit 2025-model maakt gebruik van geavanceerde Mini-LED-technologie, waardoor de helderheid veel hoger ligt dan bij OLED-schermen. Dat maakt hem ideaal voor een zonovergoten woonkamer. Met een verversingssnelheid die oploopt tot 144 Hz en een extreem lage invoervertraging, is dit voor veel competitieve gamers de favoriete keuze.

Drie monitors met 120 Hz of meer

Bij monitors ligt de standaard tegenwoordig al hoger dan 120 Hz, omdat snelheid de uitkomst van een potje schieten of racen bepaalt. Deze modellen zijn populair op Kieskeurig.

Op het gebied van monitoren zien we dat 240 Hz langzaam de nieuwe standaard wordt voor de serieuze gamer. Een model dat momenteel erg goed scoort op Kieskeurig is de LG UltraGear 27GR83Q. Dit is een 27-inch IPS-scherm met een razendsnelle verversingssnelheid van 240 Hz. In tegenstelling tot oudere modellen biedt dit scherm een extreem snelle responstijd van 1 milliseconde, waardoor je in snelle shooters geen last hebt van wazige beelden. Het is een van de meest complete monitoren van dit moment die zowel voor pc als console geschikt is.

Zoek je de absolute top in beeldkwaliteit, dan is de Samsung Odyssey G6 (G60SD) een model dat je veel ziet. Dit is een moderne OLED-monitor met een verversingssnelheid van maar liefst 360 Hz. Hoewel dat misschien overkill klinkt, zorgt de combinatie van de OLED-techniek en deze snelheid voor een ongekend vloeiende en scherpe ervaring. Het scherm heeft bovendien een nieuw koelsysteem waardoor de kans op inbranden – een angst bij oudere OLED-monitoren – aanzienlijk is verkleind.

Voor wie een beperkter budget heeft maar wel snelheid wil, is de MSI MAG 27CQ6F een actuele hardloper. Dit is een gebogen scherm (Curved) met een snelheid van 180 Hz, wat net dat beetje extra soepelheid geeft ten opzichte van de standaard 144 Hz-schermen. Het paneel biedt een hoog contrast en is daarmee een uitstekende instapper voor wie zijn game-ervaring wil upgraden zonder direct de hoofdprijs te betalen.

▼ Volgende artikel
Waarom QD-OLED voor veel gamers de beste keus is
© ID.nl
Huis

Waarom QD-OLED voor veel gamers de beste keus is

QD-OLED is steeds vaker terug te vinden in gamingmonitoren. Waar deze techniek eerst vooral was voorbehouden aan het hogere segment, zie je steeds vaker in modellen die voor een veel bredere groep gamers betaalbaar zijn. De vraag is natuurlijk of je dat verschil in beeldkwaliteit ook echt merkt tijdens het spelen. In dit artikel lees je hoe QD-OLED werkt en wanneer je het verschil in de praktijk merkt.

In dit artikel

In dit artikel lees je wat QD-OLED precies is en waarom deze schermtechniek vooral bij gamen zichtbaar voordeel biedt. We leggen uit hoe QD-OLED verschilt van traditionele lcd-panelen, wat je merkt bij snelle actie en donkere scènes, en hoe het zit met helderheid, HDR en reflecties. Ook besteden we aandacht aan burn-in en de beschermingsmechanismen die moderne QD-OLED-monitoren gebruiken. Tot slot lees je voor welk type gamer QD-OLED het meest geschikt is en wanneer een Mini-LED-monitor een logisch alternatief kan zijn.

Lees ook: Lcd versus oled: wat is het verschil en welke televisie moet je kiezen?

Wat QD-OLED anders maakt

Een traditioneel LCD-paneel werkt met achtergrondlicht dat door meerdere lagen heen moet voordat je een beeld ziet. Dat kost tijd en maakt dat zwart nooit volledig zwart wordt. QD-OLED laat die tussenlagen achterwege. Elke pixel geeft zelf licht en schakelt onafhankelijk van de rest. Daardoor reageert het beeld direct. De quantum-dot-laag zet het blauwe OLED-licht om in diepe en zuivere kleuren. Het voelt alsof je condens van een raam veegt: zodra de waas verdwijnt, zie je het beeld helder en zonder vertraging.

©ID.nl

Vloeiende beelden bij snelle actie

Die directe pixelreactie merk je vooral wanneer je snelle spellen speelt. Omdat pixels vrijwel meteen overschakelen naar een nieuwe kleurstand, blijven objecten die over het scherm vliegen scherp in beeld. In shooters, racespellen en andere games waarbij snelheid telt, bijvoorbeeld voetbalgames, ontstaat daardoor een rustiger beeld met minder bewegingsonscherpte. Je ogen hoeven zich minder vaak aan te passen. Daardoor raken ze minder snel vermoeid en houd je makkelijker overzicht, ook wanneer je langere tijd achter elkaar speelt.

©ID.nl

Zicht in donkere scènes

QD-OLED blinkt uit in donkere scènes. Pixels die geen licht hoeven te geven, staan volledig uit en leveren een diep zwart dat je bij LCD-panelen zelden ziet. Doordat heldere elementen hier direct naast kunnen staan zonder dat ze licht lekken, ontstaat een sterk contrast dat schaduwen en lichte accenten duidelijker scheidt. Daardoor verdwijnen grijze waasjes in schaduwhoeken en blijven contouren van objecten helder zichtbaar. Vooral in stealth-games, horrorspellen en shooters waarin je tegenstanders soms alleen als silhouet ziet, levert dat een tastbaar voordeel op.

©ID.nl

Kleurrijk zonder overdrijven

De quantum-dot-laag zorgt voor een breed kleurbereik waardoor lichteffecten, huidtinten en subtiele schaduwen goed zichtbaar blijven. Veel QD-OLED-monitoren tonen kleuren standaard wat verzadigd, vooral in de felste modi. In een sRGB- of filmmodus wordt het beeld zachter en natuurgetrouwer, wat beter aansluit bij fotobewerking en dagelijks gebruik. Zodra je de juiste modus gebruikt, lopen kleuren vloeiend in elkaar over en blijven ze gelijkmatig, terwijl uitgesproken elementen zoals neon en magie juist duidelijk opvallen. Dat merk je niet alleen in games, maar ook wanneer je foto's bewerkt of films kijkt.

Helderheid en HDR in perspectief

QD-OLED heeft op het gebied van helderheid flinke stappen gezet ten opzichte van eerdere OLED-generaties. In HDR-games kunnen lichte delen krachtig oplichten zonder dat fel zacht of dof oogt; explosies, glinsteringen op water en fel tegenlicht komen daardoor beter tot hun recht. Toch is het goed om te weten dat deze techniek niet alle beperkingen wegneemt. De helderheid van QD-OLED hangt sterk af van de schermvulling. Bij SDR (standaard dynamisch bereik, het normale helderheidsniveau voor dagelijkse pc-taken) op een volledig wit scherm ligt de helderheid meestal rond de 200 tot 250 nits. Bij kleinere, heldere onderdelen kan dit oplopen richting 400 tot 500 nits. In HDR kunnen pieken van 1000 tot 1300 nits worden bereikt, maar die waarden gelden vooral voor kleine accenten en niet voor het hele scherm. Mini-LED-monitoren houden hogere helderheidsniveaus langer vast, wat in fel verlichte kamers zichtbaar voordeel geeft in extreme highlights. QD-OLED compenseert veel daarvan met perfect zwart, waardoor het contrast wel krachtig blijft (zie ook kader QD-OLED versus Mini-LED) .

Reflecties in daglicht

De meeste QD-OLED-monitoren hebben een glanzende afwerking. Dat helpt bij de kleurweergave en het contrast, maar maakt het paneel gevoeliger voor reflecties bij daglicht. Daarnaast ontbreekt een polarisatiefilter. Daardoor kunnen zwartwaarden in fel licht een paarse of grijze waas krijgen: het diepe zwart wordt zichtbaar opgelicht, meer dan bij een gewone spiegeling. Dat drukt het contrast in een goed verlichte kamer en kan afleiden bij gamen. Gebruik je de monitor vooral in een donkere of gelijkmatig verlichte ruimte, dan speelt dit nauwelijks. In kamers met veel direct zonlicht of grote ramen komt een matte Mini-LED-monitor daarom vaak rustiger over.

©ID.nl

Minimale inputvertraging

Naast de snelle pixelreacties is ook de invoervertraging laag. Moderne QD-OLED-modellen reageren direct op elke muisbeweging en elke controlleractie. Vooral in competitieve shooters is dat een voordeel, omdat elke handeling zonder merkbare vertraging op het scherm verschijnt. 

QD-OLED versus Mini-LED

QD-OLED en Mini-LED worden vaak naast elkaar genoemd, maar het zijn fundamenteel verschillende technieken. QD-OLED is zelflichtend: elke pixel geeft zijn eigen licht en kan volledig uit. Dat levert perfect zwart, zeer snelle pixelreacties en sterk contrast op, wat vooral bij games met veel beweging en donkere scènes zichtbaar voordeel geeft.

Mini-LED is een verfijnde vorm van LCD. Het paneel gebruikt duizenden kleine leds als achtergrondverlichting die in zones worden gedimd. Daardoor kan een Mini-LED-scherm hoge helderheid over grote delen van het scherm vasthouden, wat prettig is in fel verlichte kamers en bij HDR met veel lichtaccenten. Zwart is hierbij wel afhankelijk van lokale dimming en nooit volledig uitgeschakeld zoals bij OLED.

Kort gezegd blinkt QD-OLED uit in contrast, snelheid en beeldrust in donkere omgevingen, terwijl Mini-LED praktischer is bij veel omgevingslicht, wanneer dezelfde elementen of onderdelen langdurig in beeld staat en als hoge helderheid belangrijk is.

Burn-in en levensduur

Burn-in blijft bij elke OLED-variant een punt van aandacht, al zijn moderne QD-OLED-schermen duidelijk verder dan eerdere generaties. Ze gebruiken meerdere beschermingsmechanismen die de belasting door statische beelden beperken. Voor normaal gamegebruik werkt dat in de praktijk goed en blijft het risico klein.

Dat neemt niet weg dat enige nuance op zijn plaats is. Gebruik je een monitor dagelijks vele uren voor taken met veel vaste elementen, zoals spreadsheets, fotobewerkingspanelen of het steeds terugkerende HUD van één game, dan is de kans op inbranden groter dan bij LCD- of Mini-LED-panelen. Afwisseling in wat je op het scherm toont en af en toe even pauze nemen helpt om het paneel langer in goede staat te houden. Even pauze nemen is ook voor jezelf goed trouwens!

Wat voor beschermingstechnieken kun je tegenkomen?

Wat is het?Wat doet het?
Screensaver (schermbeveiliging)Dimt het scherm bij langdurig stilstaand beeld en herstelt de helderheid automatisch zodra er weer beweging is, om inbranden te voorkomen.
Pixel orbiting (pixelverschuiving)Verschuift het beeld continu minimaal op pixelniveau zodat vaste elementen nooit exact op dezelfde plek blijven staan.
Pixel refresh (pixelverversing)Start een onderhoudscyclus waarbij het paneel zichzelf corrigeert om slijtage en beginnende inbranding te verminderen.
Auto Warning (automatische waarschuwing)Geeft na een bepaalde gebruiksduur automatisch een melding om een pixel refresh uit te voeren.
Logos protection (logobescherming)Herkent vaste logo's in beeld en verlaagt daar lokaal de helderheid om inbranden te beperken.
Boundary dimmer (randdimming)Dimt automatisch delen van het scherm met zwarte balken of sterke helderheidsverschillen, bijvoorbeeld bij afwijkende beeldverhoudingen.
Taskbar dimmer (taakbalkdimming)Verlaagt specifiek de helderheid van de taakbalk om langdurige statische weergave op die plek te beperken.
Thermal protection (thermische beveiliging)Past de helderheid automatisch aan wanneer de monitor te warm wordt, om oververhitting en paneelslijtage te voorkomen.

©AGON by AOC

AGON by AOC PRO OLED AG276QKD2

Voorbeeld: bescherming in de praktijk

Veel QD-OLED-monitoren combineren verschillende beschermingsmechanismen om het risico op burn-in te beperken. In onderstaande tabel zie je bijvoorbeeld wat je kunt vinden in een aantal recente modellen uit de AGON PRO line-up van AOC. Je kunt al deze functies zelf in- en uitschakelen en je kunt de intensiteit ervan aanpassen. Dat betekent dat je zelf kunt bepalen hoe sterk de bescherming is.

Techniek ⬇ / Model ➡AG276QKD2AG276UZDAG346UCDAG276QZD2
Screen saverJa: Off / Slow / FastJa: Off / Slow / FastJa: Off / Slow / FastJa: Off / Slow / Fast
Pixel orbitingJa: Off / Weak / Medium / StrongJa: Off / Weak / Medium / StrongJa: Off / Weak / Medium / StrongJa: Off / Weak / Medium / Strong
Pixel refreshJa: On / OffJa: On / OffJa: On / OffJa: On / Off
Auto WarningJa: On / OffJa: On / OffJa: On / OffJa: On / Off
Logos ProtectionJa: Off / 1 / 2 / 3 / 4Ja: Off / 1 / 2Ja: Off / 1 / 2Ja: Off / 1 / 2
Boundary dimmerJa: Off / 1 / 2 / 3 / 4Ja: Off / 1 / 2 / 3Ja: Off / 1 / 2 / 3Ja: Off / 1 / 2 / 3
Taskbar dimmerJa: Off / 1 / 2 / 3 / 4Ja: Off / 1 / 2 / 3Ja: Off / 1 / 2 / 3Ja: Off / 1 / 2 / 3
Thermal protectionJa: Off / OnJa: Off / OnJa: Off / OnJa: Off / On

Voor wie QD-OLED vooral interessant is

Gamers die veel snelle actie spelen, halen het meeste uit QD-OLED. De voordelen van de techniek zijn in elk genre zichtbaar, maar vallen vooral op in shooters en racespellen, waar tempo en directe reacties tellen. Ook filmische games die sterk leunen op licht-donkercontrasten winnen zichtbaar aan sfeer en detail.

Conclusie

QD-OLED combineert diepe zwartwaarden met snelle pixelreacties en een breed kleurbereik. Dat zorgt voor een vloeiend beeld in snelle games en meer overzicht in donkere scènes. HDR komt overtuigend tot zijn recht, al blijven Mini-LED-schermen beter overeind bij zeer hoge helderheid en fel daglicht. Inbranden blijft een punt van aandacht wanneer hetzelfde element lange tijd in beeld staat, maar moderne modellen beschikken over uitgebreide beschermingsmaatregelen. Voor veel gamers is QD-OLED daarmee een goede keuze: snel, sfeervol en klaar voor de komende jaren.

QD, OLED en QD-OLED

OLED
Elke pixel geeft zelf licht. Daardoor zijn zwartwaarden diep en schakelt het beeld snel. Geschikt voor gaming en films, met aandacht voor burn-in bij langdurig statisch beeld.

QD (Quantum Dots)
Quantum dots zetten licht om in pure, heldere kleuren. Ze worden ingezet om kleurvolume en helderheid te verbeteren.

QD-OLED
Combineert de zelflichtende OLED-pixelstructuur met een quantum-dot-laag. Je krijgt diepe zwarttinten, snelle reactie en een breed kleurbereik. Het is een balans tussen snelheid, helderheid en kleurprecisie die goed aansluit bij moderne games.