ID.nl logo
Hoe weet je dat je kerstboom dorst heeft? Laat 'm een appje sturen!
© ER - ID.nl
Huis

Hoe weet je dat je kerstboom dorst heeft? Laat 'm een appje sturen!

Sommigen zetten hun kerstboom al in november neer, en als het dan eenmaal kerst is, begint hij te verdrogen. Een standaard die ook als waterbak dient, kan dat voorkomen. Desondanks blijkt al snel dat kerstbomen binnenshuis opvallend dorstig zijn. En wie checkt het water nog als de boel onder een knus sneeuwkleedje ligt? Vandaar dit doe-het-zelf-idee voor knutselaars die een frisse groene kerstboom willen!

🎄 In dit artikel leggen we je uit hoe je zelf een kerstboomalarm kunt knutselen. Een heerlijke kerstvakantie-uitdaging voor de gevorderde knutselaar. Het resultaat? Je krijgt een appje wanneer je boom water nodig heeft!

🎄 Boodschappenlijstje (bijvoorbeeld bij Conrad.nl)🎄 Overige benodigdheden
NodeMCU-module (€ 9,-)Soldeerbout
2x Trekontlasting M10, 2 stuks (€ 2,-)Soldeertin
Printplaatje 80 × 50 mm (€ 3,30)Zijkniptang
Kunststof behuizing 85 × 56 × 39 mm (€ 4,25)Schroevendraaier
Schroefterminal 4-polig (€ 0,40)Boormachine
Netadapter 5 V, 1 A (€ 6,-)Vijl
Rode led (€ 0,10)Secondelijm
Groene led (€ 0,10)Eén-aderig snoer (30 cm)
Weerstand 100 ohm, 2 stuks (€ 0,10)Twee-aderig snoer (1 meter)
Weerstand 10 kilo-ohm (€ 0,05)multimeter (optioneel)
Optioneel, bijvoorbeeld bij AliExpress of eBay:
Watersensor (‘soil moisture sensor’) zonder elektronica (€ 0,50). Als alternatief kun je ook de gestripte uiteinden van het twee-aderige snoer gebruiken, die je een beetje uit elkaar buigt.
Totale kosten: ca. € 25,–

Hardware en software

Dit project kenmerkt zich door zijn eenvoud in hardware en behuizing. Je hebt een netadapter, een compacte behuizing met trekontlasting, een NodeMCU-module, twee leds, drie weerstanden en een printplaatje nodig om alles aan elkaar te solderen. Ideaal voor beginnende soldeerliefhebbers.

De groene led signaleert voldoende water, terwijl de rode oplicht bij een te laag niveau, zoals ingesteld in de code. De schakeling werkt op een simpele 5 volt-netadapter met minimaal 1 ampère. Een usb-adapter is ook mogelijk; vergeet dan niet een geschikte usb-kabel. Alles past in een compacte kunststof behuizing, die je natuurlijk ook zelf kunt maken of hergebruiken. Trekontlastingen beschermen de voedings- en sondekabels tegen losraken bij onbedoelde kracht.

In de rest van deze handleiding worden 'NodeMCU' en 'ESP-module' afwisselend gebruikt. NodeMCU is een populair ontwikkelbordje met een ESP-chip erop, en tegenwoordig zijn er diverse NodeMCU/ESP-modules beschikbaar.

Een compacte en eenvoudige behuizing van kunststof volstaat voor dit project. De eerste trekontlasting is al gemonteerd en de gaten voor beide leds zijn al geboord.

Ontwikkelomgeving installeren

De ESP-module is het gemakkelijkst te programmeren met de Arduino-ontwikkelomgeving (Arduino IDE). Deze kun je downloaden via www.tiny.cc/arduinosoft. Kies bij voorkeur de traditionele installer en niet de Windows-app. Dat maakt het beheren van bibliotheken en ontwikkelbordjes een stuk eenvoudiger.

Omdat Arduino IDE niet primair voor deze module is bedoeld, zul je nog wat extra onderdelen moeten installeren. Klik daarvoor op Bestand / Voorkeuren en voer op het tabblad Instellingen bij Additionele Board Beheer URLs deze url in:

https://arduino.esp8266.com/stable/package_esp8266com_index.json

Kies nu Hulpmiddelen / Board: / Board Beheer… en typ esp8266. Klik op Installeren en selecteer vervolgens de module via Hulpmiddelen / Board / NodeMCU 1.0 (ESP-12E Module). Sluit de ESP-module aan via een usb-kabel en selecteer in Arduino IDE de juiste poort (Hulpmiddelen / Poort, kies de com-poort met het hoogste nummer). Als alles goed is gegaan, is je opstelling nu klaar om met programmeren te beginnen.

Herkent je systeem het ontwikkelbordje niet, dan download je via www.tiny.cc/espdriver een stuurprogramma voor de seriële interface (let op: deze link gaat gelijk het bestand CP210x_Universal_Windows_Driver.zip downloaden).

Installeer de nieuwste versie van de ESP-module.

Aanpassen code

Het kant-en-klare programma hebben wij al voor je klaargezet; je kunt het hier downloaden. Sla het bestand Kerstboom_app.zip en pak het uit naar een willekeurige map. Open het bestand Kerstboom_app.ino (door op het bestand te dubbelklikken, opent het automatisch in Arduino IDE, zie ook kader ‘Ontwikkelomgeving installeren’).

Vul bij ssid en password respectievelijk de naam en het wachtwoord van je draadloze netwerk in.

Het versturen van appjes wordt verzorgd door de dienst CallMeBot. CallMeBot biedt overigens ook de mogelijkheid om berichten te versturen via Signal en Telegram, dit artikel gaat uit van WhatsApp. De benodigde API-sleutel vraag je aan door het nummer +34 644 975 414 aan je contacten toe te voegen en in WhatsApp het bericht I allow callmebot to send me messages te sturen naar je nieuwe contact. Binnen enkele minuten ontvang je de benodigde API-sleutel, die je samen met je telefoonnummer (let op de internationale notatie) invult als constanten in de code bij respectievelijk apikey en telefoon.

Voer je gegevens in bovenaan de code.

Toelichting code

De code begint met het insluiten van de bibliotheek ESP8266WiFi.h. Deze handelt de verbinding met het draadloze netwerk af: dankzij dit programma is de module met enkele regels code met het netwerk te verbinden. Daaronder declareer je enkele constanten en variabelen, waarvan de belangrijkste in bovenstaande alinea’s al zijn besproken. In setup() worden de pinnen gedefinieerd, de leds uitgezet en de seriële monitor geactiveerd.

Verwerken van de gegevens

De functie loop() draait continu en vormt het hart van het programma. Om te beginnen wordt de wifi-module uitgeschakeld, omdat die erg stoort op de analoge ingang. Dan wordt pin D1 op HIGH gezet, en de waarde op de analoge pin bepaald en bewaard in de variabele meting. Zodra dat klaar is, gaat D1 weer op LOW. Door dit te doen, loopt er slechts zeer kortstondig stroom door het water. Dat is belangrijk om de watersensor te ontzien: bij een constante stroom zou de anode (de kant waarop de +5 volt staat) snel corroderen.

De code werkt met twee waarden, vastgelegd in de constanten ondergrens en veilige_waarde. De waarden van deze twee liggen iets uit elkaar, zodat kleine schommelingen in de meting geen invloed hebben bij het bepalen of het nat of droog is.

Is het resultaat van de meting kleiner dan of gelijk aan ondergrens, dan gaat of blijft de rode led aan en de groene uit. Als de booleaanse variabele alarmverzonden de waarde onwaar heeft, wordt ook de functie alarm() uitgevoerd.

Droogtealarm

De functie alarm() begint met het opzetten van de wifi-verbinding. Als dat is gelukt, wordt via de API-call een appje verstuurd met de melding, waarna de variabele alarmverzonden op waar wordt gezet. Dit voorkomt dat er bij elke volgende meetronde een app uitgaat. Pas wanneer de meetwaarde boven de veilige waarde uitkomt, wordt alarmverzonden weer op onwaar gezet en staat alles weer klaar voor een nieuw alarmronde. De rode led gaat of blijft dan uit en de groene aan. De variabele pulsdelay (de wachttijd tussen twee metingen) wordt nu vijf minuten in plaats van een seconde.

De kerstboom heeft uren nodig om het water te verbruiken en niet te vaak meten beperkt de eerdergenoemde corrosie. Bij geconstateerde droogte wordt de wachttijd weer een seconde. Doordat er in die situatie geen water tussen de elektroden aanwezig is, speelt corrosie dan nauwelijks een rol. Als je de kerstboom water geeft, weet je ook zonder het waterniveau te zien wanneer je kunt stoppen.

De watersensor corrodeert niet, door slechts af en toe kort te meten.

Software uploaden en testen

Als het bestand kerstboom_app.ino naar wens is aangepast in de Arduino-ontwikkelomgeving en de NodeMCU-module is aangesloten op zowel je pc als op de watersensor, kan het uploaden beginnen. Open de seriële monitor met Ctrl+Shift+M en upload het programma met Ctrl+U.

Nadat het uploaden is voltooid, volgt de meetwaarde en de melding Droogtealarm!. De module maakt nu verbinding met het draadloze netwerk en voert de API-call uit. Het antwoord van de server verschijnt en als het goed is, ontvang je binnen enkele seconden een appje met de tekst Kerstboom heeft dorst!. De rode led brandt en de melding Droogtealarm! herhaalt zich vervolgens elke seconde.

Door de sensor (of de gestripte uiteinden van het twee-aderige snoer) tegen een natte doek te houden of gedeeltelijk onder te dompelen in een kopje water, zie je de meetwaarde oplopen, de rode led doven en de groene aan gaan. De melding Voldoende water staat nu in de seriële monitor en het programma wacht nu vijf minuten tot de volgende meting. Eventueel kun je de hoogte van ondergrens en veilige_waarde nog aanpassen in de code. Tot nu toe alles in orde? Mooi.

Voorbereiding

Boor om te beginnen drie gaten in de behuizing: twee van 5 millimeter voor de leds en twee van 10 millimeter voor de trekontlasting. Als je kleinere gaten boort, kun je die later met een vijl op maat maken. Bevestig vervolgens de trekontlastingen en check of de leds erin passen. Gebruik secondelijm om de leds stevig in de behuizing te lijmen. Soldeer nu ook de snoertjes aan de leds en de watersensor, zodat je deze later eenvoudig aan de printplaat kunt koppelen.

De behuizing met trekontlasting en met de leds erin vastgelijmd.

Bouwen van de schakeling

Zoals al opgemerkt, is de hardware van dit project beperkt. De NodeMCU-module, de drie weerstanden en de schroefterminal komen op het printplaatje. Boor om te beginnen gaten van 5 millimeter op de hoeken van de printplaat, zodat deze over de schroefgaten van de behuizing vallen.

Door de componenten slim te plaatsen, zijn ze onderling te verbinden met soldeer. Houd er rekening mee dat (afhankelijk van de baantjes op de printplaat) de module dwars in de behuizing kan komen te zitten en er is dan maar weinig marge! Plaats daarom eerst de module op de printplaat en kijk of het in de behuizing past voor je verdergaat. Fixeer dan de module door aan de onderkant de pinnen op elke hoek een stukje naar buiten te buigen, bijvoorbeeld met het platte uiteinde van een schroevendraaier. Plaats daarna de weerstanden van 100 ohm in de buurt van de pinnen D5 en D6 en de weerstand van 10 kilo-ohm bij pin A0.

De bestukte printplaat en de gedeeltelijk gesoldeerde printplaat in de behuizing.

Zet tot slot de schroefterminal aan de andere kant van de module. Ook de weerstanden en de schroefterminal blijven het best op hun plek zitten als je de pootjes een stukje ombuigt. Knip nu met een kniptang alle pootjes (ook die van de module) af op een lengte van ongeveer twee millimeter en soldeer de te verbinden onderdelen en pinnen aan elkaar. Soldeer ook de vier hoekpinnen van de module, waarvan er overigens slechts één wordt verbonden met de schroefterminal. Zie voor tips over solderen onze uitgebreide handleiding.

De schakeling is door zijn eenvoud heel geschikt voor wie met solderen begint. Tip: klik op de afbeelding; hij opent dan in een groter scherm.

Aansluiten

De afwerking is nu eenvoudiger dan ooit, want dankzij de kant-en-klare behuizing zit alles al op z’n plek. Wat rest is het aansluiten van de netadapter, de watersensor en de leds. Knip om te beginnen de ronde stekker van de kabel af. Gebruik je een usb-netadapter, dan knip je van de usb-kabel de micro-usb-connector af. Strip de afzonderlijke draadjes over een lengte van ongeveer een halve centimeter en vertin de uiteinden.

Als je een multimeter hebt, kun je de polariteit (plus en min) van de aansluitingen controleren. Heb je die niet, dan kun je kijken of er een opdruk op (een van) de draden staat. Een andere mogelijkheid is het aansluiten van een led met aan één van de pootjes een weerstand van 220 ohm. Sluit een van de adapterdraadjes aan op de weerstand en het andere draadje op het vrije pootje van de led. Het draadje dat is verbonden met het lange pootje van de led, is de plus. Markeer deze draad. Steek de vertinde uiteinden van buitenaf door de trekontlasting en zet ze vast in de schroefterminal op de printplaat, waarbij de plusdraad op VIN komt en de mindraad op GND.

Soldeer van het twee-aderige snoer elke draad aan één van de pinnen van de watersensor. Verbind de watersensor met de twee overgebleven aansluitingen van de schroefterminal, die je op de printplaat hebt verbonden met de pinnen A0 en D1 van de NodeMCU-module.

Sluit als laatste de leds aan met stukjes draad, waarvan je de uiteinden vertint. Verbind de kathodes (korte pootjes) van beide leds met GND, de anode (lange pootje) van de groene led sluit je aan op de weerstand bij pin D5 en de anode van de rode led op de weerstand bij D6.

De gestripte en vertinde uiteinden van het adaptersnoer.

Ingebruikname

Bevestig de watersensor in de voet met de kerstboom, zodat de twee pennen straks half in het water zullen hangen. Het bevestigen kan even een klusje zijn: duct-tape werkt voor bijna elke klus, maar een constructie met boutjes is wellicht iets robuuster. Let daarbij wel op dat je niet per ongeluk elektrisch verbinding maakt tussen de elektroden van de sensor!

De schakeling en het programma zijn al getest, dus kan de adapter in het stopcontact. Er is nu geen seriële monitor, dus je ziet aanvankelijk niets gebeuren. Binnen enkele seconden moet de rode led gaan branden. En binnen enkele seconden moet je een appje krijgen. Als dat niet gebeurt, is er waarschijnlijk een probleem met de wifi en zul je de schakeling wat dichterbij een accesspoint moeten zetten.

Geef de kerstboom water en zodra dat boven de sensor uitkomt, moet de rode led uitgaan en de groene gaan branden. Alvast een groene Kerst gewenst!

Het kerstboomalarm in bedrijf.

🌼 Ook handig ná de feestdagen

Als de kerstboom weer de deur uit is, kun je de schakeling natuurlijk ook prima gebruiken voor bloemen en planten. Daarvoor zul je eventueel de constanten ondergrens en veilige waarde moeten veranderen, een kwestie van experimenteren. Behalve deze voor de hand liggend toepassing, is de schakeling met het gedeeltelijk omdraaien van de code ook inzetbaar als lekkage-alarm. De functie alarm() voer je dan juist uit als de waarde te hoog is in plaats van te laag. Afgezien van wat tekstuele aanpassingen hoef je daarvoor niet heel veel te wijzigen. Een logische plek is dan bijvoorbeeld onder de wasmachine.

▼ Volgende artikel
Bedien je slimme apparaten met een zelfgebouwd touchscreen
© InfiniteFlow - stock.adobe.com
Huis

Bedien je slimme apparaten met een zelfgebouwd touchscreen

Houd je van knutselen én automatiseer je alles in en om je huis met Home Assistant? Kijk dan zeker eens naar ESPHome. Je kunt eindeloos variëren met componenten. Dankzij de koppeling met Home Assistant bouw je gemakkelijk en voor weinig geld een lichtschakelaar of sensor, om maar wat te noemen. De LVGL-bibliotheek zorgt ervoor dat je nu ook eenvoudig met een touchscreen en zelfbedachte gebruikersinterface kunt werken. We laten zien hoe dat werkt met tips voor passende projecten.

In dit artikel laten we zien hoe je een touchscreen-interface bouwt voor Home Assistant met ESPHome en LVGL:

  • Installeer ESPHome en configureer een ESP32-microcontroller voor je project
  • Sluit een touchscreen aan en stel de juiste GPIO-pinnen en drivers in
  • Gebruik LVGL-widgets voor een interactieve interface
  • Integreer je touchscreen met Home Assistant voor directe bediening van je slimme apparaten

Lees ook: 5 fouten die je niet moet maken in je smarthome

Code downloaden

In dit artikel staat een voorbeeld van wat YAML-code. Omdat YAML erg gevoelig is voor foute spaties, kun je die code beter downloaden en daarna bekijken of kopiëren. In het bestand espcode.txt staan alle regels voorbeeldcode zoals ze in dit artikel aan bod komen. Maar je vindt ook een uitgewerkt voorbeeld in het bestand cyd-demo.yaml. Beide bestanden zijn hier te downloaden.

Uitgewerkt voorbeeld

Het meest uitgewerkte voorbeeld voor de demo met LVGL vind je op deze GitHub-pagina van auteur Gertjan Groen. In de code die je kunt downloaden (ook in het losse bestand cyd-demo.yaml) hebben we ook de RGB-led op de achterzijde toegevoegd, die je bijvoorbeeld als statusmelding kunt gebruiken. Verder is een timer toegevoegd om de backlight te regelen, zodat deze bij inactiviteit wordt uitgeschakeld. Tot slot laten we zien hoe je de GPIO-pinnen kunt gebruiken via de I2C-bus. Op de GitHub-pagina vind je nog meer handige informatie.

ESPHome maakt het heel makkelijk om apparaten te maken voor een slim huis, zoals je eigen sensors. Zo bouwden we eerder al eens een luchtkwaliteitsmonitor, een infraroodzender/ontvanger en een controller met drukknoppen en leds, waarmee je apparaten kunt bedienen en de status aflezen. Hoe je dat doet, lees je in dit artikel: Zo maak je met ESPHome apparaten geschikt voor je smarthome.

De basis voor ESPHome is een kleine, voordelige en zuinige microcontroller, meestal de ESP32. ESPHome ondersteunt enorm veel componenten en biedt daardoor haast onbegrensde mogelijkheden. We helpen je kort op weg met ESPHome, maar gaan ook meteen een stapje verder met de toevoeging van een touchscreen en de LVGL-bibliotheek. Daar kun je sinds augustus 2024 officieel gebruik van maken binnen ESPHome.

Met LVGL kun je aan de hand van widgets een grafische gebruikersinterface opbouwen en weergeven (zie kader ‘Grafische interfaces met widgets’). Soms kom je de term HMI (Human Machine Interface) tegen, waarmee een grafische gebruikersinterface voor het bedienen van apparatuur wordt bedoeld.

De kracht van ESPHome is dat je niet alleen lokaal aangesloten apparaten bedienbaar kunt maken, bijvoorbeeld via een relais, maar ook alle apparaten die je binnen Home Assistant gebruikt.

Grafische interfaces met widgets

LVGL staat voor Light and Versatile Graphics Library. Het is een opensource-bibliotheek die sinds 2016 bestaat. Je kunt ermee werken binnen ESPHome, Arduino, Tasmota en openHASP. Het laatste project is zelfs specifiek bedoeld voor microcontrollerfirmware met LVG.

De bibliotheek is heel licht, waardoor het soepel en snel kan werken op apparaten met beperkte capaciteit, bijvoorbeeld met een microcontroller. Bovendien kan LVGL flexibel met verschillende lay-outs, schermformaten en invoermethodes werken. Naast touchscreens kun je ook bijvoorbeeld muis, toetsenbord, losse knoppen en draaiknoppen toevoegen.

Via meer dan dertig widgets kun je een grafische gebruikersinterface opbouwen. Het uiterlijk is via thema’s en stijlen eenvoudig aan te passen. Bovendien kun je met animaties werken.

LVGL wordt gebruikt in slimme apparaten zoals thermostaten, smartwatches en keukenapparatuur, en zelfs in touchscreens voor industriële omgevingen. Op de website vind je enkele interactieve demo’s voor bekende toepassingen, waarbij de gebruikersinterface in de browser wordt getoond.

Met LVGL kun je via widgets een gebruikersinterface bouwen.

1 Wat gaan we doen?

Met ESPHome kun je relatief eenvoudig apparaatjes voor je slimme huis maken. Een voordeel ten opzichte van bijvoorbeeld Arduino en MicroPython is dat je niet hoeft te programmeren. Je hoeft alleen een configuratiebestand te maken waarin je de gebruikte microcontroller, verbindingsgegevens voor je wifi-netwerk en alle aangesloten componenten aanduidt. Hierna wordt firmware gemaakt en weggeschreven op je microcontroller. Alleen die eerste keer is dit soms wat lastig. Heb je het eenmaal werkend? Alle keren erna kun je heel eenvoudig de configuratie aanpassen en over-the-air (OTA) naar de microcontroller sturen.

In dit artikel gaan we met LVGL werken. Hiermee kun je binnen ESPHome grafische interfaces maken via widgets. Voor veel projecten zul je daarom niet eens componenten hoeven aan te sluiten, maar heb je genoeg aan een touchscreen. Denk bijvoorbeeld aan een lichtknop en helderheidsregeling voor een slimme lamp in Home Assistant, zoals we in dit artikel demonstreren. Je kunt natuurlijk ook geavanceerdere gebruikersinterfaces maken voor vrijwel elk apparaat in Home Assistant.

©pozitivo - stock.adobe.com

Je kunt bijvoorbeeld zelf een gebruikersinterface voor je slimme lampen bouwen, zodat je ze eenvoudig kunt bedienen.

2 Wat heb je nodig?

Wat hardware betreft, is het vrij eenvoudig. De ESP32-chip heeft snel de voorkeur boven de verouderde ESP8266-versie, zeker als je met een touchscreen gaat werken. De Raspberry Pi Pico W (zie gelijknamig kader) is ook een optie, maar die wordt nog niet volledig ondersteund binnen ESPHome.

Makkelijk om mee te starten is een eenvoudig ontwikkelbordje rondom de ESP32 dat je voor ongeveer 5 euro kunt aanschaffen. Het is wel fijn als je hier goede documentatie bij hebt, zodat je op zijn minst weet waar alle aansluitingen zitten.

Er zijn diverse varianten van de ESP32-module. Bekende opties zijn de ESP-WROOM-32E, ESP32-C3 en ESP32-S3. De ESP32-C3 wordt vaak in extra compacte bordjes gebruikt, die je onder de naam ‘super mini’ tegenkomt – handig als je niet veel aansluitingen nodig hebt of niet veel ruimte hebt.

De ESP32-S3 is een fijne optie vanwege de beschikbaarheid van PSRAM (Pseudo Static RAM), een voordelig type werkgeheugen dat onder meer nuttig is bij grafische toepassingen. Staat een touchscreen centraal in jouw project en wil je snel van start, overweeg dan een model met ingebouwde ESP32-chip (zie volgende paragraaf).

De ESP32-module is in verschillende uitvoeringen verkrijgbaar.

Raspberry Pi Pico W

De Raspberry Pi Pico is een voordelige en flexibele serie ontwikkelbordjes rondom de RP2040-microcontroller. De eerste versie verscheen in januari 2021. De Pico W is vanwege de wifi-connectiviteit een interessante optie voor ESPHome. Recent werd de Pico 2 W aangekondigd die op meerdere fronten is verbeterd. Dat model is op het moment van schrijven echter nog niet geschikt voor ESPHome.

De Raspberry Pi Pico W is ook bruikbaar in Home Assistant.

3 Touchscreen

Als je een touchscreen gaat gebruiken in je ESPHome-project, dan kun je eventueel een los exemplaar op de microcontroller aansluiten en configureren. Maar je kunt ook een touchscreen met ingebouwde ESP32 kiezen. Dat is vaak veel handiger en goedkoper. Je hoeft niet te solderen en kunt direct een gebruikersinterface bouwen in YAML-code. Het scheelt ook wat tijd. Bovendien zijn er zelfs modellen compleet met behuizing.

Kies een scherm dat door ESPHome wordt ondersteund. De website van ESPHome geeft goede suggesties. Je kunt ook afgaan op ervaringen van anderen. Het kan dan een iets grotere uitdaging zijn om de juiste configuratie voor je display in ESPHome te vinden. Je zult daarbij waarschijnlijk wel even moeten experimenteren, niet alleen bij het instellen van je display, maar ook bijvoorbeeld voor het touchgedeelte. Zelfs bij het vrij gangbare touchscreen dat we in dit artikel gebruiken, was dat een beetje prutsen.

Kies een touchscreen dat door ESPHome wordt ondersteund.

4 Scherm met ESP32

Voor dit artikel hebben we een eenvoudige ESP32-2432S028 gebruikt, met een resistief touchscreen van 2,8 inch met 240 × 320 pixels. Dit model wordt ook wel de ‘Cheap Yellow Display’ genoemd, wat vooral met de gele printplaat te maken heeft.

Er zijn meerdere varianten. Zo wordt in de schermpjes vaak de ILI9341-chip als aansturing gebruikt, maar soms ook de ILI9342, zoals in ons exemplaar. Dat vergt dan een heel kleine, maar noodzakelijke aanpassing in je configuratie.

Je kunt het scherm flexibel inzetten voor je IoT-projecten. Zoek je een wat groter touchscreen, dan kun je bijvoorbeeld de CrowPanel van Elecrow overwegen. Die is er in een versie van 5 inch (ca. 32 euro) en 7 inch (ca. 42 euro), inclusief acrylbehuizing en verzending via de fabrikant. Beide versies hebben een touchscreen met hoge resolutie van 800 × 480 pixels en zijn voorzien van de modernere ESP32-S3-chip. Het touchscreen is capacitief, wat zeker voor kleinere bedieningselementen fijner werkt dan het resistieve touchscreen in ons goedkope alternatief.

Tegenwoordig bestaan er ook ronde touchscreens. Een leuke optie (zij het met beperkte schermruimte) is de ESP32-2424S012 met een ESP32-C3-microcontroller, een rond kleuren-touchscreen van 1,28 inch en in een witte of zwarte behuizing. Makerfabs heeft een vergelijk schermpje zonder behuizing. De LilyGo T-RGB heeft een wat groter 2,1inch-scherm (zonder behuizing), maar is ruim twee keer zo duur.

De ESP32-2432S028 is een voordelig scherm (onder), een wat duurder alternatief is het capacitieve 5inch-aanraakscherm met ESP32 van Elecrow (boven).

5 Add-ons voor ESPHome

Hoewel je bijvoorbeeld een pc met Python kunt gebruiken voor het bewerken van je configuratiebestanden en het flashen van de microcontroller met de software voor ESPHome, is het meestal veel makkelijker om de add-on voor ESPHome binnen Home Assistant te gebruiken. Dat geeft ook een ander groot voordeel: je kunt de configuratie voor alle apparaten met ESPHome binnen Home Assistant beheren. Je zult zeker in de testfase veel wijzigingen aan de configuratie moeten maken.

Via de add-on voor ESPHome voeg je eenvoudig microcontrollers toe.

6 Microcontroller toevoegen

We gaan nu een verse microcontroller toevoegen. Je kunt eventueel ESPHome Web gebruiken om de microcontroller voor te bereiden voor gebruik met ESPHome, maar wij geven zoals gezegd de voorkeur aan de ESPHome-add-on, die je binnen Home Assistant kunt openen.

Je kunt voor deze methode de microcontroller gewoon via usb aansluiten op je eigen pc, maar dit vereist wel dat je Home Assistant opent via een beveiligde https-verbinding. Lukt dat niet? Als alternatief kun je de microcontroller ook via usb aansluiten op het systeem met Home Assistant zelf, voordat je verder gaat in ESPHome.

Het dashboard van ESPHome toont alle toegevoegde apparaten.

Ook leuk: Werk met wat je hebt: creëer je eigen alarmsysteem met Home Assistant

7 Configuratie

Klik binnen ESPHome op New device om een nieuwe microcontroller te initialiseren. Vul bij Name een naam in voor het apparaat. Bij Network name vul je de naam (SSID) in van het wifi-netwerk waarmee de microcontroller moet verbinden en bij Password het bijbehorende wachtwoord. Klik dan op Next.

In de volgende stap zal ESPHome een configuratiebestand maken, firmware bouwen en de microcontroller flashen. Klik daarvoor dus eerst op Connect. Als het goed is, kun je nu de com-poort selecteren waarmee de microcontroller is verbonden. Zie je geen com-poort, dan zul je eerst drivers moeten installeren. De instructies krijg je als je het venster sluit zonder een com-poort te selecteren. Als de verbinding is gelukt, zal de installatie verdergaan. Lukt het niet? Dan kun je kiezen voor Skip this step gevolgd door een handmatige configuratie.

Vul een naam in en de details voor het wifi-netwerk.

Toepassingen voor een touchscreen

Er zijn veel leuke toepassingen voor een touchscreen. Zo kun je bijvoorbeeld een soort weerstation maken, dat je voorziet van actuele informatie van Home Assistant. Ook kun je live de opbrengst van je zonnepanelen laten zien of het verbruik in huis. Je zou een schermpje voor Music Assistant kunnen maken met bijvoorbeeld de weergave van het nummer en volumeregeling (zie ook: Met Music Assistant ben jij de baas over jouw muziekcollectie). Tot slot kun je een scherm gebruiken voor statusmeldingen of loggegevens.

8 Touchscreen met ESP32

We gebruiken in dit artikel zoals gezegd de ESP32-2432S028 als voorbeeld. Dit is een touchscreen met ingebouwde ESP32-chip. Dit apparaatje kun je direct toevoegen aan ESPHome: precies zoals in paragraaf 7 staat omschreven, al moesten we in dit geval na het aanwijzen van de com-poort wel de boot-knop even indrukken.

Overigens bevat het apparaat meestal een voorgeprogrammeerde demo met een gebruikersinterface op basis van LVGL. Die zie je als je hem zo uit de doos op een voeding aansluit. Je kunt daarmee meteen de werking controleren. Je zult bij een model met resistief aanraakscherm overigens iets harder moeten drukken dan je misschien gewend bent.

We gebruiken dit voordelige 2,8inch-aanraakscherm, dat ook wel ‘Cheap Yellow Display’ wordt genoemd.

9 Schermconfiguratie

Na het toevoegen van je touchscreen heb je direct een basisconfiguratie voor ESPHome. Via Edit kun je deze configuratie aanpassen. Zowel voor het aansturen van het display als de registratie van het aanraken wordt SPI (Serial Peripheral Interface) gebruikt. Voor onze ESP32-2432S028 is dit de configuratie, rekening houdend met de gebruikte interne GPIO-pinnen:

We voegen nu eerst de configuratie van het display toe en in paragraaf 11 het touchgedeelte. Voor het display is de configuratie als volgt:

Merk op dat er ook een (oudere) variant van dit touchscreen is met de ILI9341. In dat geval gebruik je model: ILI9341 en invert_colors: false. Na het maken van de aanpassingen kies je Install. Je kunt nu kiezen hoe je de firmware wilt overbrengen. Meestal kies je Wirelessly voor over-the-air-updates. Het apparaat hoeft daarbij niet meer met jouw pc te zijn verbonden.

Binnen ESPHome kun je eenvoudig de configuratie bewerken.

10 LVGL-bibliotheek

Binnen ESPHome kon je voorheen met displays werken door binnen de component display met lambda bijvoorbeeld teksten met een bepaald lettertype naar je scherm te sturen. Als je LVGL gaat gebruiken, gebruik je geen lambda meer, maar alleen LVGL en widgets. Als eerste voegen we de LVGL-bibliotheek toe aan de YAML-code:

lvgl:
  buffer_size: 25%

De optie buffer_size is ons geval noodzakelijk, vanwege de afwezigheid van PSRAM. In paragraaf 13 voegen we ook nog widgets toe. Omdat we dat hier nog niet hebben gedaan, zie je na het flashen als het goed is een demo met een knop, checkbox, cirkel met tekst en schuifbalk.

11 Configuratie touchscreen

Bediening via het scherm is nog niet mogelijk. Daarvoor moeten we het touchscreen toevoegen aan de configuratie van ESPHome:

Bewaar de aanpassingen en installeer de nieuwe firmware. Controleer of je de demo goed kunt bedienen. De regels onder on_touch zorgen dat in de logs de geregistreerde coördinaten worden getoond. Er kunnen aanpassingen nodig zijn in de regels onder calibration en transform.

12 Backlight

Het display is voorzien van een achtergrondverlichting (backlight) via pin 21. We definiëren deze output als volgt:

Daarna configureren we de achtergrondverlichting, waarbij we verwijzen naar de hierboven gedefinieerde output.

Na het flashen zal de backlight standaard aanstaan. Eventueel kun je deze vanuit Home Assistant aan- en uitzetten en de helderheid ervan regelen, bijvoorbeeld op basis van afwezigheid. Je kunt ook een script maken om de helderheid bij inactiviteit terug te brengen. Daarvoor verwijzen we je naar het uitgewerkte voorbeeld op GitHub (zie kader ‘Code downloaden’).

Binnen Home Assistant kun je eventueel ook de backlight aan- en uitzetten.

13 Widgets toevoegen

Onder de regel lvgl kun je nu de gewenste LVGL-componenten toevoegen aan je YAML-configuratie. Denk aan bijvoorbeeld knoppen, schuifregelaars, grafieken of labels. In dit voorbeeld voegen we aan de bovenkant alleen twee widgets toe voor een dimbare led, te weten een schakelaar (button) en schuifregelaar (slider).

De meeste opties dienen voor het positioneren van de widget. We geven bijvoorbeeld de breedte (width) en hoogte (height) aan, halen de widgets iets van de rand of met x en y, en regelen de uitlijning met align. Het gedeelte bij on_click zorgt dat de bewuste lamp in Home Assistant wordt omgeschakeld bij het klikken op de button. Voor de slider doen we hetzelfde onder on_release. Die acties zijn overigens om veiligheidsredenen niet direct mogelijk. In paragraaf 16 leggen we uit hoe je dit kunt toestaan.

We voegen in dit voorbeeld alleen twee eenvoudige widgets toe.

Cookbook voor ESPHome en LVGL

We houden het hier redelijk eenvoudig, maar je kunt natuurlijk veel geavanceerdere gebruikersinterfaces maken. Zo is bijvoorbeeld een geneste structuur mogelijk, kun je op verschillende manieren een grid maken, en met pagina’s individuele schermen of secties in je gebruikersinterface maken. Daarbij kan elke pagina zijn eigen widgets hebben. ESPHome geeft op zijn website in een ‘cookbook’ nog wat praktische voorbeelden voor het werken met LVGL, ook in combinatie met Home Assistant.

De website van ESPHome heeft veel voorbeelden voor het werken met LVGL.

14 Interactie met Home Assistant

De entiteit voor de dimbare lamp heeft in Home Assistant de naam light.wledkantoor. De waardes zijn nodig om de widgets de juiste status te kunnen geven. Daarom voegen we hieronder een binary_sensor toe voor de status (aan of uit) en een sensor voor het helderheidsniveau. We werken vervolgens bij on_state en on_value de widgets bij als de status verandert in Home Assistant. Bij id vul je uiteraard de id van de betreffende widget in.

Gebruik de logfunctie om te zien of bijvoorbeeld een status verandert.

15 Toevoegen aan Home Assistant

De add-on voor ESPHome hebben we gebruikt om de microcontroller van firmware te voorzien. Maar je zult het apparaat hierna nog wel moeten toevoegen aan Home Assistant. Dat is heel eenvoudig: het wordt automatisch gevonden. In Home Assistant zie je via Instellingen / Apparaten en diensten het bewuste apparaat direct terug op het tabblad Integraties. Klik op de knop Toevoegen om het aan Home Assistant toe te voegen.

Het apparaat met ESPHome moet je nog toevoegen aan Home Assistant.

16 Acties toestaan

Als je het touchscreen bedient, zal Home Assistant een melding geven dat het ESPHome-apparaat heeft geprobeerd een actie in Home Assistant uit te voeren. Standaard is dit om veiligheidsredenen niet toegestaan, maar dit is eenvoudig op te lossen.

Ga naar Instellingen / Apparaten en klik dan onder het kopje Geconfigureerd op ESPhome. Achter het bewuste apparaat klik je vervolgens op Configureren. Zet een vinkje bij Toestaan dat het apparaat Home Assistant-acties uitvoert. Klik op Verzenden. Hierna zijn alle acties zoals het omschakelen van de lamp en regelen van de helderheid wel toegestaan.

Zorg dat het apparaat acties in Home Assistant mag uitvoeren.

▼ Volgende artikel
Slimme stekkers: welke modellen zijn echt zuinig?
© Proxima Studio - stock.adobe.com
Huis

Slimme stekkers: welke modellen zijn echt zuinig?

Met slimme stekkers verander je je huis eenvoudig in een smart home: steek ze in een gewoon stopcontact, sluit er lampen of je televisietoestel op aan en regel via een app of met je stem bijvoorbeeld dat ze automatisch worden uitgeschakeld. Zo voorkom je onnodig stroomverbruik doordat apparaten niet meer op stand-by blijven staan. Maar slimme stekkers gebruiken zélf ook stroom. Welke zijn zuinig genoeg om écht geld te besparen?

Energie besparen en slimme apparaten gaan uitstekend samen. In dit artikel lees je hoe je geld bespaart door gebruik te maken van de zuinigste slimme stekkers. • Slimme stekkers en stroomverbruik • De zuinigste slimme stekkers op een rij • Waar je op moet letten bij het kopen van slimme stekkers

Ook lezen: Stroomvreters: deze apparaten in huis verbruiken meer energie dan je denkt


Slimme stekker of slim stopcontact?

De termen slimme stekker en slim stopcontact worden door elkaar gebruikt. Dat is een beetje verwarrend, maar wel begrijpelijk: het is een apparaat met aan de ene kant een stekker (voor je 'domme' stopcontact) en aan de andere kant een slim stopcontact. In dit artikel hanteren we de benaming slimme stekker.


Zo bespaart een slimme stekker stroom

Een slimme stekker helpt je stroom besparen door apparaten automatisch uit te schakelen, bijvoorbeeld 's nachts. Zo verbruikt je televisie geen stroom meer in de stand-bymodus. Je kunt instellen dat alle apparatuur op vaste tijden uitschakelt, bijvoorbeeld zodra je gaat slapen. Je kunt ook met één druk op de knop alle lampen en andere apparaten uitschakelen, zodat je niets vergeet. Slimme stekkers uit een hogere prijsklasse bieden bovendien inzicht in je stroomverbruik. Daardoor kun je gerichter energie besparen.

©Proxima Studio - stock.adobe.com

Verbruik van een slimme stekker

Tegenover de besparing staat het eigen stroomverbruik van slimme stekkers. Dat begint bij zo'n 0,3 watt en loopt op tot 2 watt. Niet veel, maar ze staan wel 24 uur per dag en 365 dagen per jaar aan. De zuinigste modellen verbruiken daardoor op jaarbasis 2,6 kWh (0,3 watt × 24 uur × 365 dagen ÷ 1000). Bij een stroomprijs van 0,30 euro per kWh komt dat neer op 0,79 euro per jaar. Een slimme stekker die 2 watt verbruikt kost op jaarbasis 5,26 euro. In een slim huis gebruik je al snel 10 slimme stekkers, waardoor je op jaarbasis aardig wat geld kunt besparen door de zuinigste modellen uit te kiezen.

Kies niet alleen op prijs, maar ook op verbruik Vergelijk je het jaarlijkse stroomverbruik met de aanschafprijs van een slimme stekker (meestal tussen de 5 en 35 euro), dan blijkt al snel dat vooral het stroomverbruik bepalend is voor de totale kosten op de lange termijn. Toch vermelden veel verkopers niets over het energieverbruik.

Denk aan de compatibiliteit

Alleen letten op het stroomverbruik van een slimme stekker is niet genoeg. Het is minstens zo belangrijk dat de stekker goed samenwerkt met jouw slimme netwerk. De meeste modellen werken met Google Home en Amazon Alexa, terwijl Apple HomeKit selectiever is. Check daarom altijd de productbeschrijving om zeker te weten dat de slimme stekker bij jou thuis werkt.

Slimme stekkers die samenwerken met

Google Assistant en met Alexa

Stroomverbruik en verbindingstype

Waar komt het grote verschil in stroomverbruik tussen slimme stekkers vandaan? Dat heeft alles te maken met de verbinding met je thuisnetwerk. De meeste stekkers gebruiken wifi om bereikbaar te blijven, zodat jij ze op afstand kunt bedienen. Maar wifi verbruikt relatief veel energie – het signaal is eigenlijk krachtiger dan nodig is voor dit soort toepassingen.

Een zuiniger alternatief is een hub die het wifisignaal omzet naar een lichter protocol, zoals Zigbee of Z-Wave. Die vormen een soort schakel tussen je netwerk en de slimme stekkers. Het grote voordeel: dit soort verbindingen verbruiken vaak minder dan 0,5 watt.

©Proxima Studio - stock.adobe.com

Zigbee en Z-Wave

De zuinige protocollen die gebruikt worden zijn Zigbee en Z-Wave en die werken allebei prima. Maar ze zijn niet verenigbaar met elkaar. Je zult dus één systeem moeten kiezen. Daarnaast heb je een centrale hub nodig om alles aan elkaar te koppelen. Dat is een kleine investering die zich, door de lagere stroomkosten, snel terugverdient.

Slimme stekkerVerbruik (watt)Protocol
TP-Link Tapo P1151 – 1,5Wifi
TP-Link Tapo P1000,5 – 1Wifi
Shelly Plug S0,9 – 1,5Wifi
Iqore Smart Plug1 – 2Wifi
Aqara Smart Plug0,3 – 0,5Zigbee
Philips Hue Smart Plug0,3 – 0,5Zigbee
IKEA TRETAKTSmart Plug0,3 – 0,5Zigbee
Samsung SmartThings Outlet0,5 – 1,5 WZigbee
Fibaro Wall Plug V20,5 – 1Z-Wave
Qubino Smart Plug0,5 – 1Z-Wave

Verbruik van hubs voor Zigbee en Z-Wave

Voor een compleet beeld moeten we ook kijken naar het stroomverbruik van een Zigbee- of Z-Wave-hub. Zigbee-hubs verbruiken doorgaans tussen de 0,5 en 3 watt. Sluit je meerdere slimme stekkers of andere apparaten aan, dan verdien je dat al snel terug ten opzichte van wifi. Z-Wave-hubs verbruiken wat meer, meestal tussen de 2 en 10 watt.

Ook qua veelzijdigheid zijn er verschillen. De Philips Hue Bridge (Zigbee) is bijvoorbeeld erg zuinig, met een verbruik tussen de 0,5 en 1 watt. Maar deze werkt uitsluitend met Philips Hue-apparaten.

Een slimme start is het halve werk

Zoals je ziet, zijn er heel wat factoren om rekening mee te houden. Breng daarom vooraf in kaart wat je nu nodig hebt én wat je in de toekomst verwacht te gebruiken. Zo voorkom je onnodige kosten en bespaar je op de lange termijn, vooral als je ook let op het energieverbruik per apparaat.


Nog meer energie besparen? ⤵️

Vraag een offerte aan voor verduurzaming: