ID.nl logo
Hoe weet je dat je kerstboom dorst heeft? Laat 'm een appje sturen!
© ER - ID.nl
Huis

Hoe weet je dat je kerstboom dorst heeft? Laat 'm een appje sturen!

Sommigen zetten hun kerstboom al in november neer, en als het dan eenmaal kerst is, begint hij te verdrogen. Een standaard die ook als waterbak dient, kan dat voorkomen. Desondanks blijkt al snel dat kerstbomen binnenshuis opvallend dorstig zijn. En wie checkt het water nog als de boel onder een knus sneeuwkleedje ligt? Vandaar dit doe-het-zelf-idee voor knutselaars die een frisse groene kerstboom willen!

🎄 In dit artikel leggen we je uit hoe je zelf een kerstboomalarm kunt knutselen. Een heerlijke kerstvakantie-uitdaging voor de gevorderde knutselaar. Het resultaat? Je krijgt een appje wanneer je boom water nodig heeft!

🎄 Boodschappenlijstje (bijvoorbeeld bij Conrad.nl)🎄 Overige benodigdheden
NodeMCU-module (€ 9,-)Soldeerbout
2x Trekontlasting M10, 2 stuks (€ 2,-)Soldeertin
Printplaatje 80 × 50 mm (€ 3,30)Zijkniptang
Kunststof behuizing 85 × 56 × 39 mm (€ 4,25)Schroevendraaier
Schroefterminal 4-polig (€ 0,40)Boormachine
Netadapter 5 V, 1 A (€ 6,-)Vijl
Rode led (€ 0,10)Secondelijm
Groene led (€ 0,10)Eén-aderig snoer (30 cm)
Weerstand 100 ohm, 2 stuks (€ 0,10)Twee-aderig snoer (1 meter)
Weerstand 10 kilo-ohm (€ 0,05)multimeter (optioneel)
Optioneel, bijvoorbeeld bij AliExpress of eBay:
Watersensor (‘soil moisture sensor’) zonder elektronica (€ 0,50). Als alternatief kun je ook de gestripte uiteinden van het twee-aderige snoer gebruiken, die je een beetje uit elkaar buigt.
Totale kosten: ca. € 25,–

Hardware en software

Dit project kenmerkt zich door zijn eenvoud in hardware en behuizing. Je hebt een netadapter, een compacte behuizing met trekontlasting, een NodeMCU-module, twee leds, drie weerstanden en een printplaatje nodig om alles aan elkaar te solderen. Ideaal voor beginnende soldeerliefhebbers.

De groene led signaleert voldoende water, terwijl de rode oplicht bij een te laag niveau, zoals ingesteld in de code. De schakeling werkt op een simpele 5 volt-netadapter met minimaal 1 ampère. Een usb-adapter is ook mogelijk; vergeet dan niet een geschikte usb-kabel. Alles past in een compacte kunststof behuizing, die je natuurlijk ook zelf kunt maken of hergebruiken. Trekontlastingen beschermen de voedings- en sondekabels tegen losraken bij onbedoelde kracht.

In de rest van deze handleiding worden 'NodeMCU' en 'ESP-module' afwisselend gebruikt. NodeMCU is een populair ontwikkelbordje met een ESP-chip erop, en tegenwoordig zijn er diverse NodeMCU/ESP-modules beschikbaar.

Een compacte en eenvoudige behuizing van kunststof volstaat voor dit project. De eerste trekontlasting is al gemonteerd en de gaten voor beide leds zijn al geboord.

Ontwikkelomgeving installeren

De ESP-module is het gemakkelijkst te programmeren met de Arduino-ontwikkelomgeving (Arduino IDE). Deze kun je downloaden via www.tiny.cc/arduinosoft. Kies bij voorkeur de traditionele installer en niet de Windows-app. Dat maakt het beheren van bibliotheken en ontwikkelbordjes een stuk eenvoudiger.

Omdat Arduino IDE niet primair voor deze module is bedoeld, zul je nog wat extra onderdelen moeten installeren. Klik daarvoor op Bestand / Voorkeuren en voer op het tabblad Instellingen bij Additionele Board Beheer URLs deze url in:

https://arduino.esp8266.com/stable/package_esp8266com_index.json

Kies nu Hulpmiddelen / Board: / Board Beheer… en typ esp8266. Klik op Installeren en selecteer vervolgens de module via Hulpmiddelen / Board / NodeMCU 1.0 (ESP-12E Module). Sluit de ESP-module aan via een usb-kabel en selecteer in Arduino IDE de juiste poort (Hulpmiddelen / Poort, kies de com-poort met het hoogste nummer). Als alles goed is gegaan, is je opstelling nu klaar om met programmeren te beginnen.

Herkent je systeem het ontwikkelbordje niet, dan download je via www.tiny.cc/espdriver een stuurprogramma voor de seriële interface (let op: deze link gaat gelijk het bestand CP210x_Universal_Windows_Driver.zip downloaden).

Installeer de nieuwste versie van de ESP-module.

Aanpassen code

Het kant-en-klare programma hebben wij al voor je klaargezet; je kunt het hier downloaden. Sla het bestand Kerstboom_app.zip en pak het uit naar een willekeurige map. Open het bestand Kerstboom_app.ino (door op het bestand te dubbelklikken, opent het automatisch in Arduino IDE, zie ook kader ‘Ontwikkelomgeving installeren’).

Vul bij ssid en password respectievelijk de naam en het wachtwoord van je draadloze netwerk in.

Het versturen van appjes wordt verzorgd door de dienst CallMeBot. CallMeBot biedt overigens ook de mogelijkheid om berichten te versturen via Signal en Telegram, dit artikel gaat uit van WhatsApp. De benodigde API-sleutel vraag je aan door het nummer +34 644 975 414 aan je contacten toe te voegen en in WhatsApp het bericht I allow callmebot to send me messages te sturen naar je nieuwe contact. Binnen enkele minuten ontvang je de benodigde API-sleutel, die je samen met je telefoonnummer (let op de internationale notatie) invult als constanten in de code bij respectievelijk apikey en telefoon.

Voer je gegevens in bovenaan de code.

Toelichting code

De code begint met het insluiten van de bibliotheek ESP8266WiFi.h. Deze handelt de verbinding met het draadloze netwerk af: dankzij dit programma is de module met enkele regels code met het netwerk te verbinden. Daaronder declareer je enkele constanten en variabelen, waarvan de belangrijkste in bovenstaande alinea’s al zijn besproken. In setup() worden de pinnen gedefinieerd, de leds uitgezet en de seriële monitor geactiveerd.

Verwerken van de gegevens

De functie loop() draait continu en vormt het hart van het programma. Om te beginnen wordt de wifi-module uitgeschakeld, omdat die erg stoort op de analoge ingang. Dan wordt pin D1 op HIGH gezet, en de waarde op de analoge pin bepaald en bewaard in de variabele meting. Zodra dat klaar is, gaat D1 weer op LOW. Door dit te doen, loopt er slechts zeer kortstondig stroom door het water. Dat is belangrijk om de watersensor te ontzien: bij een constante stroom zou de anode (de kant waarop de +5 volt staat) snel corroderen.

De code werkt met twee waarden, vastgelegd in de constanten ondergrens en veilige_waarde. De waarden van deze twee liggen iets uit elkaar, zodat kleine schommelingen in de meting geen invloed hebben bij het bepalen of het nat of droog is.

Is het resultaat van de meting kleiner dan of gelijk aan ondergrens, dan gaat of blijft de rode led aan en de groene uit. Als de booleaanse variabele alarmverzonden de waarde onwaar heeft, wordt ook de functie alarm() uitgevoerd.

Droogtealarm

De functie alarm() begint met het opzetten van de wifi-verbinding. Als dat is gelukt, wordt via de API-call een appje verstuurd met de melding, waarna de variabele alarmverzonden op waar wordt gezet. Dit voorkomt dat er bij elke volgende meetronde een app uitgaat. Pas wanneer de meetwaarde boven de veilige waarde uitkomt, wordt alarmverzonden weer op onwaar gezet en staat alles weer klaar voor een nieuw alarmronde. De rode led gaat of blijft dan uit en de groene aan. De variabele pulsdelay (de wachttijd tussen twee metingen) wordt nu vijf minuten in plaats van een seconde.

De kerstboom heeft uren nodig om het water te verbruiken en niet te vaak meten beperkt de eerdergenoemde corrosie. Bij geconstateerde droogte wordt de wachttijd weer een seconde. Doordat er in die situatie geen water tussen de elektroden aanwezig is, speelt corrosie dan nauwelijks een rol. Als je de kerstboom water geeft, weet je ook zonder het waterniveau te zien wanneer je kunt stoppen.

De watersensor corrodeert niet, door slechts af en toe kort te meten.

Software uploaden en testen

Als het bestand kerstboom_app.ino naar wens is aangepast in de Arduino-ontwikkelomgeving en de NodeMCU-module is aangesloten op zowel je pc als op de watersensor, kan het uploaden beginnen. Open de seriële monitor met Ctrl+Shift+M en upload het programma met Ctrl+U.

Nadat het uploaden is voltooid, volgt de meetwaarde en de melding Droogtealarm!. De module maakt nu verbinding met het draadloze netwerk en voert de API-call uit. Het antwoord van de server verschijnt en als het goed is, ontvang je binnen enkele seconden een appje met de tekst Kerstboom heeft dorst!. De rode led brandt en de melding Droogtealarm! herhaalt zich vervolgens elke seconde.

Door de sensor (of de gestripte uiteinden van het twee-aderige snoer) tegen een natte doek te houden of gedeeltelijk onder te dompelen in een kopje water, zie je de meetwaarde oplopen, de rode led doven en de groene aan gaan. De melding Voldoende water staat nu in de seriële monitor en het programma wacht nu vijf minuten tot de volgende meting. Eventueel kun je de hoogte van ondergrens en veilige_waarde nog aanpassen in de code. Tot nu toe alles in orde? Mooi.

Voorbereiding

Boor om te beginnen drie gaten in de behuizing: twee van 5 millimeter voor de leds en twee van 10 millimeter voor de trekontlasting. Als je kleinere gaten boort, kun je die later met een vijl op maat maken. Bevestig vervolgens de trekontlastingen en check of de leds erin passen. Gebruik secondelijm om de leds stevig in de behuizing te lijmen. Soldeer nu ook de snoertjes aan de leds en de watersensor, zodat je deze later eenvoudig aan de printplaat kunt koppelen.

De behuizing met trekontlasting en met de leds erin vastgelijmd.

Bouwen van de schakeling

Zoals al opgemerkt, is de hardware van dit project beperkt. De NodeMCU-module, de drie weerstanden en de schroefterminal komen op het printplaatje. Boor om te beginnen gaten van 5 millimeter op de hoeken van de printplaat, zodat deze over de schroefgaten van de behuizing vallen.

Door de componenten slim te plaatsen, zijn ze onderling te verbinden met soldeer. Houd er rekening mee dat (afhankelijk van de baantjes op de printplaat) de module dwars in de behuizing kan komen te zitten en er is dan maar weinig marge! Plaats daarom eerst de module op de printplaat en kijk of het in de behuizing past voor je verdergaat. Fixeer dan de module door aan de onderkant de pinnen op elke hoek een stukje naar buiten te buigen, bijvoorbeeld met het platte uiteinde van een schroevendraaier. Plaats daarna de weerstanden van 100 ohm in de buurt van de pinnen D5 en D6 en de weerstand van 10 kilo-ohm bij pin A0.

De bestukte printplaat en de gedeeltelijk gesoldeerde printplaat in de behuizing.

Zet tot slot de schroefterminal aan de andere kant van de module. Ook de weerstanden en de schroefterminal blijven het best op hun plek zitten als je de pootjes een stukje ombuigt. Knip nu met een kniptang alle pootjes (ook die van de module) af op een lengte van ongeveer twee millimeter en soldeer de te verbinden onderdelen en pinnen aan elkaar. Soldeer ook de vier hoekpinnen van de module, waarvan er overigens slechts één wordt verbonden met de schroefterminal. Zie voor tips over solderen onze uitgebreide handleiding.

De schakeling is door zijn eenvoud heel geschikt voor wie met solderen begint. Tip: klik op de afbeelding; hij opent dan in een groter scherm.

Aansluiten

De afwerking is nu eenvoudiger dan ooit, want dankzij de kant-en-klare behuizing zit alles al op z’n plek. Wat rest is het aansluiten van de netadapter, de watersensor en de leds. Knip om te beginnen de ronde stekker van de kabel af. Gebruik je een usb-netadapter, dan knip je van de usb-kabel de micro-usb-connector af. Strip de afzonderlijke draadjes over een lengte van ongeveer een halve centimeter en vertin de uiteinden.

Als je een multimeter hebt, kun je de polariteit (plus en min) van de aansluitingen controleren. Heb je die niet, dan kun je kijken of er een opdruk op (een van) de draden staat. Een andere mogelijkheid is het aansluiten van een led met aan één van de pootjes een weerstand van 220 ohm. Sluit een van de adapterdraadjes aan op de weerstand en het andere draadje op het vrije pootje van de led. Het draadje dat is verbonden met het lange pootje van de led, is de plus. Markeer deze draad. Steek de vertinde uiteinden van buitenaf door de trekontlasting en zet ze vast in de schroefterminal op de printplaat, waarbij de plusdraad op VIN komt en de mindraad op GND.

Soldeer van het twee-aderige snoer elke draad aan één van de pinnen van de watersensor. Verbind de watersensor met de twee overgebleven aansluitingen van de schroefterminal, die je op de printplaat hebt verbonden met de pinnen A0 en D1 van de NodeMCU-module.

Sluit als laatste de leds aan met stukjes draad, waarvan je de uiteinden vertint. Verbind de kathodes (korte pootjes) van beide leds met GND, de anode (lange pootje) van de groene led sluit je aan op de weerstand bij pin D5 en de anode van de rode led op de weerstand bij D6.

De gestripte en vertinde uiteinden van het adaptersnoer.

Ingebruikname

Bevestig de watersensor in de voet met de kerstboom, zodat de twee pennen straks half in het water zullen hangen. Het bevestigen kan even een klusje zijn: duct-tape werkt voor bijna elke klus, maar een constructie met boutjes is wellicht iets robuuster. Let daarbij wel op dat je niet per ongeluk elektrisch verbinding maakt tussen de elektroden van de sensor!

De schakeling en het programma zijn al getest, dus kan de adapter in het stopcontact. Er is nu geen seriële monitor, dus je ziet aanvankelijk niets gebeuren. Binnen enkele seconden moet de rode led gaan branden. En binnen enkele seconden moet je een appje krijgen. Als dat niet gebeurt, is er waarschijnlijk een probleem met de wifi en zul je de schakeling wat dichterbij een accesspoint moeten zetten.

Geef de kerstboom water en zodra dat boven de sensor uitkomt, moet de rode led uitgaan en de groene gaan branden. Alvast een groene Kerst gewenst!

Het kerstboomalarm in bedrijf.

🌼 Ook handig ná de feestdagen

Als de kerstboom weer de deur uit is, kun je de schakeling natuurlijk ook prima gebruiken voor bloemen en planten. Daarvoor zul je eventueel de constanten ondergrens en veilige waarde moeten veranderen, een kwestie van experimenteren. Behalve deze voor de hand liggend toepassing, is de schakeling met het gedeeltelijk omdraaien van de code ook inzetbaar als lekkage-alarm. De functie alarm() voer je dan juist uit als de waarde te hoog is in plaats van te laag. Afgezien van wat tekstuele aanpassingen hoef je daarvoor niet heel veel te wijzigen. Een logische plek is dan bijvoorbeeld onder de wasmachine.

▼ Volgende artikel
Redesign van mobiele Netflix-app krijgt ruimte voor verticale video's
© ink drop - stock.adobe.com
Huis

Redesign van mobiele Netflix-app krijgt ruimte voor verticale video's

Netflix gaat dit jaar zijn mobiele app van een redesign voorzien. Daarbij komt er ruimte voor verticale video's om het verticale scherm van smartphones tegemoet te komen.

Dat kondigde co-CEO Greg Peters gisteren aan tijdens een gesprek met investeerders. De nieuwe interface van de mobiele app is nog niet getoond, maar moet ergens dit jaar uitkomen en Netflix helpen met "de uitbreiding van onze zaken gedurende het komende decennium".

Verticale video's

Netflix geeft aan dat het al sinds mei vorig jaar experimenteert met verticale video's. Daarbij worden er korte clips uit films en series van Netflix getoond in een verticaal formaat - iets wat voor smartphonegebruikers wereldwijd steeds natuurlijker voelt dankzij socialmedia-apps als TikTok en Instagram. Daarbij wordt het voor consumenten steeds normaler om videocontent op hun mobiel te kijken in plaats van op tv.

Netflix wil de opties voor verticale video's dus uitbreiden en de vernieuwde mobiele app die later dit jaar uit zal komen, moet dit mogelijk maken. Daarnaast wil het bedrijf ook meer stappen maken in de wereld van videopodcasts, waar de vernieuwde app ook geschikter voor moet worden. Deze week heeft Netflix de eerste exclusieve videopodcasts gedebuteerd.

Plannen van Netflix

De hierboven beschreven veranderingen lijken te suggereren dat Netflix zijn markt wil verbreden en het een en ander leert van populaire socialmediaplatforms. Tegelijkertijd blijft het streamingbedrijf investeren in nieuwe films en series.

Netflix wil ook nog altijd filmproductiebedrijf Warner Bros. overnemen, en daarmee dus ook HBO Max. Beide bedrijven zien de overname zitten, maar Paramount zit ertussen en wil Warner Bros. ook graag overnemen. Uiteindelijk beslissen aandeelhouders van Warner Bros. Daarom heeft Netflix de overnamedeal deze week nog wat verfijnd, waarbij er in meer 'contant' geld uitbetaald wordt in plaats van aandelen.

Nieuw op ID: het complete plaatje

Misschien valt het je op dat er vanaf nu ook berichten over games, films en series op onze site verschijnen. Dat is een bewuste stap. Wij geloven dat technologie niet stopt bij hardware; het gaat uiteindelijk om wat je ermee beleeft. Daarom combineren we onze expertise in tech nu met het laatste nieuws over entertainment. Dat doen we met de gezichten die mensen kennen van Power Unlimited, dé experts op het gebied van gaming en streaming. Zo helpen we je niet alleen aan de beste tv, smartphone of laptop, maar vertellen we je ook direct wat je erop moet kijken of spelen. Je vindt hier dus voortaan de ideale mix van hardware én content.

▼ Volgende artikel
Hoe kies je de juiste powerbank?
© Tevarak Phanduang | NaMaKuki_2016
Huis

Hoe kies je de juiste powerbank?

Je bent onderweg en ziet dat je telefoon nog maar vijf procent batterij heeft. Op dat moment is een powerbank precies wat je nodig hebt. Alleen: welke? De juiste keuze begint met twee vragen: hoeveel energie heb je onderweg nodig en hoe snel moet die energie eruit kunnen?

In dit artikel

Je leest hier hoe je een powerbank kiest die past bij jouw gebruik. Je ziet waarom mAh op de verpakking niet alles zegt en hoe je met wattuur (Wh) beter ziet hoeveel energie een powerbank kan opslaan en afgeven.  Ook leggen we uit waar laadsnelheid vandaan komt, wat usb-c en Power Delivery doen en waarom de juiste kabel bij hogere vermogens belangrijk is. Tot slot krijg je tips voor het opladen van een tablet of laptop.

Lees ook: Slimme tips om energie te besparen op je smartphone

Capaciteit: mAh is handig, maar reken in Wh

In de specificaties van powerbanks zie je bijna altijd een getal in milliampère-uur (mAh). Maar daarbij moet je je wel realiseren dat dat niet het hele verhaal is. Fabrikanten geven die mAh vaak op bij de interne batterijspanning van de cellen in de powerbank (meestal rond 3,6 tot 3,7 volt). Jouw telefoon laadt meestal via 5 volt, en bij snelladen soms op 9 of 12 volt. Die omzetting kost energie.

Zie de powerbank als een watertank met een kraan die je moet omzetten naar een andere maat aansluiting. Dat omzetten levert altijd wat verlies op. Daarom haal je in de praktijk niet 10.000 mAh uit 10.000 mAh. Reken grofweg met een bruikbare opbrengst die vaak ergens rond de 60 tot 80 procent ligt, afhankelijk van de kwaliteit van de elektronica en hoe je laadt. Met 10.000 mAh kun je een gemiddelde smartphone daarom meestal geen twee keer volledig vullen, maar eerder ongeveer anderhalf keer. Heb je een telefoon met een kleinere accu, dan kom je dichter bij de opgegeven twee keer; met een grotere accu haal je dat juist minder snel.

Wil je wat preciezer rekenen, kijk dan naar wattuur (Wh). Dat is de eenheid die echt iets zegt over hoeveel energie erin zit. Een eenvoudige omrekening helpt: Wh = (mAh × volt) / 1000. Staat er op de powerbank bijvoorbeeld 10.000 mAh bij 3,7 V, dan is dat ongeveer 37 Wh aan energie in de cellen, voordat je het omzetverlies meeneemt.

Powerbanks vergelijken

In de winkel zie je bijna altijd mAh als capaciteitsaanduiding. Zoals je hierboven hebt kunnen lezen is dat niet perfect. Maar omdat fabrikanten dezelfde soort cellen gebruiken en allemaal op dezelfde manier rekenen, kun je mAh wel gebruiken om powerbanks onderling te vergelijken. Heb je een powerbank gevonden die je wat lijkt, dan kun je bovenstaande berekening gebruiken om een meer realistisch beeld van het aantal keer opladen te krijgen.

View post on TikTok

Hoeveel capaciteit heb je echt nodig?

Als je vooral een extra lading voor je telefoon zoekt op een lange dag, dan zit je met 10.000 mAh in de praktijk vaak goed. Is 'bijna vol' al al genoeg, dan kan 5.000 mAh ook, maar reken er dan niet op dat je elke moderne smartphone die helemaal leeg is weer volledig volgeladen krijgt. Ga je een weekend weg of laad je meerdere apparaten op, dan is 20.000 mAh een logische stap. Je hebt dan meer oplaadcapaciteit, maar houd er wel rekening mee dat dat ook betekent dat de powerbank groter en zwaarder is.

Voor tablets geldt hetzelfde principe, alleen is de interne accu meestal groter dan die van een telefoon. Daardoor lijkt een powerbank die voor je telefoon prima is, bij een tablet ineens snel leeg. Dat is niet vreemd: je giet simpelweg meer water in een grotere emmer. Voor laptops ligt het net even anders: daar draait het niet alleen om capaciteit, maar vooral om het vermogen (wattage). Daar komen we zo op terug.


🔋Tot zover ging het over de hoeveelheid energie (mAh/Wh). De volgende stap is de afgifte: met welk vermogen (watt) kan de powerbank die energie aan je telefoon, tablet of laptop leveren? 


Snelheid: wattage maakt het verschil

Capaciteit zegt iets over hoe vaak je kunt laden. Snelheid gaat over wattage: hoeveel vermogen de powerbank kan leveren. Dat vermogen is vooral relevant als je snel wilt bijladen, of als je een tablet of laptop wilt opladen. USB-c is daarbij de norm geworden, en USB Power Delivery (PD) is de techniek waarmee lader en toestel afspraken maken over spanning en stroom. Je powerbank en je telefoon of laptop stemmen dat onderling af, zodat laden snel kan zonder dat het onveilig wordt. Daarvoor moeten de poort en je kabel het wel ondersteunen. Let daarom ook op de aansluitingen: usb-c heb je nodig voor snelladen met Power Delivery, terwijl usb-a vooral handig is als je oudere kabels of accessoires gebruikt.

©vadish - stock.adobe.com

Eén powerbank voor telefoon én laptop: waar je op let

Een laptop opladen vraagt meer dan een telefoon. Bij een telefoon kom je vaak weg met 10 tot 20 watt. Een laptop heeft meestal 45 watt of meer nodig, en veel modellen werken prettiger met 65 watt of hoger, zeker als je tijdens het laden ook blijft werken. De beste snelcheck is simpel: kijk naar het wattage van je eigen laptoplader. Dat is je richtgetal. Zit je daar ver onder, dan kan het laden extreem traag worden, of je laptop accepteert de lader helemaal niet.

Ook de juiste kabel is belangrijk. Voor hogere vermogens is niet elke usb-C-kabel geschikt. Tot ongeveer 60 watt (meestal 20 V bij 3 A) gaat het vaak goed met een kabel die expliciet 3 A ondersteunt. Ga je boven de 60 watt, dan heb je doorgaans een usb-c-kabel nodig die 5 A aankan. Zulke kabels hebben meestal een kleine chip in de stekker, een zogeheten e-marker. Die chip vertelt aan de powerbank en je laptop dat de kabel veilig meer stroom kan verwerken. Zie het als een identiteitsbewijs: zonder e-marker schakelt het systeem vaak terug naar een lagere stand, zodat het laden langzamer gaat en de kabel niet te warm wordt. Kijk in de specificaties of op de kabel zelf of er 3 A (tot circa 60 W) of 5 A (voor hogere vermogens) staat; dat is de snelste check. 

Formaat en gewicht: energie weegt nu eenmaal wat

Meer capaciteit betekent meestal meer cellen, en dus meer gewicht. Een powerbank van 20.000 mAh zit vaak ergens in de buurt van 350 tot 500 gram. Dat voelt in een jaszak al snel log. In een rugtas valt het mee. Stel jezelf dus de vraag: wil je elke dag een kleine powerbank mee voor noodgevallen, of is dat voor jou niet genoeg en ga je dus voor een grotere powerbank? 

Veiligheid: kies niet alleen op prijs

Bij draagbare accu's wil je geen twijfel over veiligheid. Een powerbank hoort bescherming te hebben tegen oververhitting, overladen en kortsluiting, maar bij heel goedkope modellen is dat niet altijd goed geregeld. De kans dat het misgaat is klein, alleen zijn de gevolgen groot als het wél gebeurt. Kies daarom liever een merk dat laat zien hoe het met veiligheid omgaat en dat testnormen en keurmerken gewoon vermeldt. Je hoeft die standaarden niet uit je hoofd te leren, maar het helpt als een merk concreet zegt welke testen en keurmerken het gebruikt. 

Zo kies je de juiste powerbank

 De juiste powerbank kies je door stap voor stap te bepalen wat je nodig hebt: eerst de hoeveelheid energie (liefst in Wh, met mAh als praktische indicatie), daarna de laadsnelheid (wattage en PD), en pas daarna pas de vorm en het gewicht. Voor dagelijks gebruik zit je vaak goed met een compacte powerbank rond 10.000 mAh met usb-c en Power Delivery. Wil je meer capaciteit zodat je meerdere keren kunt opladen (of ook je tablet opladen), dan is 20.000 mAh logischer. Houd er dan wel rekening mee dat de powerbank zwaarder wordt. Wil je ook een laptop kunnen laden, kijk dan naar het wattage van je laptoplader en kies een powerbank die dat vermogen via usb-c PD kan leveren, inclusief een kabel die geschikt is voor dat hogere vermogen.