ID.nl logo
Zekerheid & gemak

Zo werken wifi-frequenties

We leven in een draadloze wereld, draden vinden we eigenlijk niks. Gelukkig kun je dankzij wifi je laptop, tablet en smartphone draadloos verbinden met je netwerk en internet. Wifi is zelfs zo populair dat het voor veel mensen zelfs synoniem is met internet. Hoe werken wifi-frequenties precies?

Wifi (of Wi-Fi zoals het officieel door de Wi-Fi Alliance wordt geschreven) is de merknaam voor draadloze netwerken gebaseerd op IEEE 802.11-standaarden. De term heeft verder geen betekenis en het staat dus niet – zoals vaak wordt aangenomen – voor Wireless Fidelity, al is de naam natuurlijk wel een duidelijke knipoog naar hifi.

Wifi is gebaseerd op 802.11-standaarden en de eerste variant van 802.11 werd in 1997 geïntroduceerd met een theoretische snelheid van 2 Mbit/s. In verbeterde vorm (802.11b) deed de technologie vanaf 1999 succesvol zijn intrede bij consumenten thuis en werd de draadloze techniek voor het eerst wifi genoemd. Toen was 11 Mbit/s al heel wat, tegenwoordig kijken we niet op van 1300 Mbit/s.

2,4 GHz en 5 GHz

Wifi maakt gebruik van vergunningsvrije frequentieruimte op twee frequentiebanden: 2,4 en 5 GHz. Deze frequenties worden niet alleen voor wifi gebruikt, maar zijn eigenlijk bedoeld voor industriële, wetenschappelijke en medische toepassingen waaronder de magnetron. De 2,4GHz-band is 83,5 MHz breed maar kent toch 13 verschillende kanalen van 20 MHz breed. De kanalen overlappen elkaar dan ook waardoor er in de praktijk maar drie kanalen zijn die tegelijkertijd zonder overlap gebruikt kunnen worden.

De 5GHz-band heeft in Europa 455 MHz aan bandbreedte. Voor ieder van de in Europa negentien gedefinieerde kanalen is netjes de volle 20 MHz bandbreedte beschikbaar. Helaas zijn alleen de vier kanalen in het eerste blok helemaal vrij te gebruiken, voor de andere kanalen gelden strengere regels omdat de frequenties bijvoorbeeld ook door radarsystemen worden gebruikt. Deze zogenoemde dfs-kanalen moeten dan vrijgegeven worden en zijn niet op ieder accesspoint aanwezig. Tel daar bij op dat bij 802.11ac in beginsel vier 20MHz-kanalen combineert tot één kanaal van 80 MHz breed en er is minder ruimte dan je op basis van de grafiek zou verwachten.

802.11n en 802.11ac

Tegenwoordig gebruiken we twee wifi-standaarden door elkaar: 802.11n en 802.11ac. Ten opzichte van zijn voorganger heeft 802.11n drie belangrijke verbeteringen. Er kunnen meer datastromen tegelijkertijd gebruikt worden (mimo), er kunnen twee kanalen gebundeld worden tot één kanaal van 40 MHz en naast de 2,4- kan ook de 5GHz-band worden gebruikt. Een 40 MHz breed kanaal zorgt voor een theoretische 150 Mbit/s, al is dat tegenwoordig alleen realistisch op de 5GHz-band.

De huidige chipsets ondersteunen soms de QAM-256-modulatie van 802.11ac onder de naam Turbo-QAM ook op de 2,4GHz-band voor een theoretische 200 Mbit/s per datastroom. Dit wordt door clients echter vrijwel niet ondersteund. 802.11ac is een doorontwikkeling op de 5GHz-band en voegt tot vier kanalen samen tot één kanaal van 80 MHz. In combinatie met onder andere een betere modulatie (256-QAM) kan er per datastroom maximaal 433,3 Mbit/s worden gehaald.

Tegenwoordig wordt door chipsetfabrikanten onder de naam Nitro-QAM ook 1024-QAM ondersteund voor een nog hogere theoretische snelheid op 802.11ac (en soms zelfs 802.11n op de 2,4GHz-band), maar daar heb je door gebrek aan ondersteuning in clients weinig aan.

Mimo is in de vorm van mu-mimo (multi-user multiple-input multiple-output) verbeterd waardoor een wifi-accesspoint kan communiceren met een groep van meerdere clients tegelijkertijd door de datastromen te verdelen. Wel moeten de clients mu-mimo ondersteunen. In de praktijk kun je de theoretische snelheden van wifi in beginsel door de helft delen en is nog lager heel goed mogelijk. Dit komt doordat dat wifi half-duplex is (er wordt alleen gezonden of ontvangen), er veel overhead is en het signaal gevoelig is voor storingen.

802.11ac is een doorontwikkeling op de 5GHz-band en voegt tot vier kanalen samen

-

WEP en WPA

Wifi vliegt letterlijk door de lucht, vandaar dat de standaard al sinds het begin beveiliging kent. Wired Equivalent Privacy (wep) vormde de eerste beveiliging en is gebaseerd op 64- of 128bit-rc4-versleuteling met een vaste sleutel. De implementatie van een vaste sleutel zorgde ervoor dat wep eenvoudig bleek te kraken en daarom kwam de Wi-Fi Alliance in 2003 met wpa (Wi-Fi Protected Access) als stoplap.

Wpa gebruikt het Temporal Key Integrity Protocol (TKIP) en gebruikt net als wep rc4-versleuteling, maar dan met dynamische sleutels. Omdat de versleuteling hetzelfde was, konden bestaande clients met een firmware-update geschikt gemaakt worden. Uiteindelijk is wpa2 dat gebruikmaakt van ccmp (Counter Mode CBC-MAC Protocol) op basis van betere 128bit-aes-versleuteling de echte opvolger.

Thuis gebruiken we wpa2-personal, dat werkt met een vast wachtwoord in de router. Dat wachtwoord wordt bij het aanmelden gebruikt om de echte wisselende encryptiesleutel van het netwerk te achterhalen. Het wpa2-wachtwoord moet een veilig, willekeurig wachtwoord zijn omdat de authenticatie de enige bekende zwakte van wpa2 is. Aangenomen wordt dat een willekeurig wachtwoord van 16 tekens momenteel niet te kraken is. Wel moet wps worden uitgeschakeld.

Routers

Ac-routers worden ingedeeld in klassen die gebaseerd zijn op de combinatie van datastromen en ondersteunde modulatie. Dit zijn enkele van die klassen.

AC1200: twee datastromen op 2,4 GHz (300 Mbit/s) en twee op 5 GHz (867 Mbit/s);

AC1750: drie datastromen op 2,4 GHz (450 Mbit/s) en drie op 5 GHz (1300 Mbit/s);

AC1900: drie datastromen op 2,4 GHz met TurboQAM (600 Mbit/s) en drie op 5 GHz (1300 Mbit/s), mu-mimo optioneel;

AC2600: vier datastromen op 2,4 GHz met TurboQAM (800 Mbit/s) en vier op 5 GHz (1750 Mbit/s), mu-mimo;

AC3100/AC3150: vier datastromen op 2,4 GHz met NitroQAM (1000 Mbit/s) en vier op 5 GHz met NitroQAM (2165 Mbit/s), mu-mimo;

AC3200 (tri-band): drie datastromen op 2,4 GHz met TurboQAM (600 Mbit/s) en twee keer drie op 5 GHz (1300 + 1300 Mbit/s);

AC3200: drie datastromen op 2,4 GHz met TurboQAM (600 Mbit/s) en drie datastromen op 5 GHz met 160 GHz (2500 Mbit/s), mu-mimo;

AC5300/5400 (tri-band): vier datastromen op 2,4 GHz met NitroQAM (1000 Mbit/s) en twee keer vier op 5 GHz met NitroQAM (2165 + 2165 Mbit/s), mu-mimo;

AD7200: vier datastromen op 2,4 GHz met TurboQAM (800 Mbit/s) en vier op 5 GHz (1750 Gbit/s) plus 60 GHz (4600 Mbit/s), mu-mimo.

©PXimport

Wifi door de jaren heen

Wifi is door de jaren heen telkens sneller geworden. Dat ziet er zo uit:

1971: ALOHAnet UHF Wireless Packet network - 0,0096 Mbit/s

1991: WaveLAN (voorloper 802.11) – 2 Mbit/s

1997: 802.11-1997 - 2 Mbit/s

1999: 802.11b - 11 Mbit/s

1999: 802.11a - 54 Mbit/s

2003: 802.11g - 54 Mbit/s

2006: Draft-n – 300 Mbit/s

2009: 802.11n – 450 Mbit/s

2012: 802.11ad - 7 Gbit/s

2013: 802.11ac – 1300 Mbit/s

2014: 802.11ac wave 2 – 2165 Mbit/s

2018: 802.11ax 4,8 Gbit/s

De toekomst

Met 802.11ad is de 60GHz-band toegevoegd, maar dit is meer een aanvulling op wifi en bedoeld voor toepassingen op zeer korte afstanden. De echte opvolger is 802.11ax en ondersteunt naast de 5GHz-band ook de 2,4GHz-band. In combinatie met meer datastromen en een nog betere 1024QAM-modulatie kan er volgens Qualcomm bij hun eerste chipset een maximale theoretische snelheid van 4,8 Gbit/s worden gehaald.

Clients ondersteunen uiteraard minder datastromen, zo zouden de eerste clients maximaal 1,8 Gbit/s halen. 802.11ax moet het draadloze netwerk dan ook vooral beter laten werken met meer clients tegelijkertijd. Hoewel 802.11ax nog niet definitief is vastgesteld, worden de eerste producten in 2018 op de markt verwacht.

▼ Volgende artikel
Dekbed in de wasdroger: helpt een tennisbal echt?
© ID.nl
Huis

Dekbed in de wasdroger: helpt een tennisbal echt?

Wanneer je je dekbed gewassen hebt, wil je dat het natuurlijk weer lekker dik en luchtig aanvoelt. Maar wanneer je hem gewoon in de droger gooit, kan de vulling gaan klonteren, zodat er dunne stukken en dikke stukken ontstaan. Dat slaapt niet echt lekker. Om dat te voorkomen, gooien veel mensen er een paar tennisballen bij. Helpt dat echt?

In dit artikel

Je leest wat tennisballen in de droger doen en bij welke dekbedden dat wel of juist minder goed werkt. We leggen uit hoeveel ballen je nodig hebt, waar je op let bij het type tennisbal en waarom voldoende ruimte in de trommel belangrijk is. Ook staan we stil bij alternatieven zoals speciale drogerballen en geven we praktische tips om je dekbed gelijkmatig te laten drogen en mooi in vorm te houden.

Lees ook: 9 veelgemaakte fouten bij het drogen van je was

Wat tennisballen in de droger doen

Tijdens het drogen raken de tennisballen telkens het dekbed. Dat helpt vooral bij dons en veren. Als die nat zijn, blijven ze aan elkaar plakken en zakt de vulling in. Door de constante beweging vallen die samengepakte delen weer uiteen, waardoor de vulling zich opnieuw verspreidt. Zo kan de warme lucht overal beter bij en droogt het dekbed gelijkmatiger. De droogtijd wordt er niet korter van, maar het dekbed komt wel duidelijk voller uit de droger.

Hoe vaak moet je je dekbed eigenlijk wassen?

Een dekbed hoeft niet vaak in de was. Voor de meeste mensen is één tot twee keer per jaar genoeg. Dat komt omdat het meeste vuil (denk bijvoorbeeld aan zweet of huidschilfers) niet in het dekbed zelf terechtkomt, maar in het dekbedovertrek. Dat overtrek was je regelmatig, meestal eens per één à twee weken. Het dekbed blijft daardoor relatief schoon.

Soms is vaker wassen wel logisch. Bijvoorbeeld als je veel zweet in je slaap, last hebt van een huisstofmijtallergie of het overtrek niet zo vaak verschoont. Ook na ziekte of bij zichtbare vlekken is een extra wasbeurt verstandig.

Hoe vaak je kunt wassen, hangt ook af van de vulling. Niet elk dekbed kan namelijk even goed tegen veel wasbeurten. Dons- en verendekbedden kunnen meestal in de wasmachine, mits je het waslabel volgt en ze daarna goed laat drogen. Synthetische dekbedden zijn in dat opzicht wat vergevingsgezinder en kunnen vaak vaker gewassen worden zonder dat de vulling daaronder lijdt.

Twijfel je of wassen echt nodig is? Dan is luchten een goed alternatief. Hang je dekbed regelmatig buiten of bij een open raam. Daarmee kun je een wasbeurt vaak nog maanden uitstellen.

View post on TikTok

Hoeveel tennisballen zijn genoeg?

Met één tennisbal in de wasdroger merk je vaak weinig, zeker bij een groot dekbed. Die verdwijnt al snel in de stof en heeft dan weinig effect. Met twee tot vier ballen werkt het beter, omdat ze het dekbed op meerdere plekken tegelijk in beweging houden. Zolang de ballen vrij kunnen bewegen en niet vast blijven zitten in de vulling, doen ze hun werk.

Kun je elke tennisbal gebruiken bij het drogen van een dekbed in de droger?

iet elke tennisbal is even geschikt. Vooral nieuwe of felgekleurde ballen kunnen bij hogere temperaturen kleur afgeven en kleine pluisjes verliezen van de vilten buitenlaag. Dat komt niet vaak voor, maar het risico is wel aanwezig. Gebruik je oudere tennisballen, dan is de kans hierop kleiner. Wil je dat verder beperken, dan kun je de ballen in een oude witte sok stoppen en die dichtknopen. Het effect blijft grotendeels hetzelfde, al is het iets minder uitgesproken dan met losse ballen.

Speciale drogerballen

Er bestaan ook speciale drogerballen van wol of kunststof. Die zijn bedoeld voor gebruik in de droger en geven geen kleur af. Ze doen hetzelfde als tennisballen: ze zorgen dat het dekbed tijdens het drogen in beweging blijft. Wolballen maken minder lawaai en zijn milder voor stoffen. Stop je je dekbed regelmatig in de droger? Dan kun je beter deze speciale bollen gebruiken in plaats van tennisballen.  

Geef het dekbed genoeg ruimte in de droger

Tennisballen helpen alleen als het dekbed voldoende ruimte heeft om te bewegen. Is de trommel te vol, dan draait alles als één geheel rond en gebeurt er weinig. Wil je grote tweepersoonsdekbedden drogen, dan heb je een droger met een ruime trommel nodig. Heb je die niet zelf? Kijk dan of er een wasserette bij je in de buurt is. Meer ruimte zorgt voor meer beweging en daarmee voor een beter eindresultaat.

Niet elk dekbed kan in de droger

Tennisballen hebben vooral effect bij dons- en verendekbedden. Bij synthetische vulling is dat verschil kleiner en kan de constante beweging van de ballen de vulling na verloop van tijd zelfs vervormen. Wol, zijde en andere natuurlijke materialen mogen meestal helemaal niet in de droger. Check daarom altijd eerst het waslabel voordat je het dekbed in de trommel legt.

Even tussendoor opschudden helpt

Haal het dekbed halverwege het programma even uit de droger en schud het los, alsof je het bed opmaakt. Leg het daarna omgedraaid terug in de trommel. Zo verdeelt de vulling zich opnieuw en kan het dekbed gelijkmatiger drogen.

Wat kun je van het eindresultaat verwachten?

Tennis- of drogerballen zijn vooral een hulpmiddel, geen vervanging voor de juiste drooginstellingen. Droog het dekbed niet te vaak of te heet: kies een lage of middelhoge temperatuur en selecteer een speciaal dons- of beddengoedprogramma als dat op je droger zit. Zorg ook voor voldoende ruimte in de trommel. Als je dan ook nog eens ballen laat meedraaien, heb je er alles aan gedaan om te zorgen dat je dekbed weer lekker vol uit de droger komt!

▼ Volgende artikel
SSD vs. HDD: waarom is een SSD zo veel sneller dan een harde schijf?
© arinahabich
Huis

SSD vs. HDD: waarom is een SSD zo veel sneller dan een harde schijf?

Waarom start een computer met een SSD binnen enkele seconden op, terwijl een oude harde schijf blijft ratelen? Het vervangen van een HDD door een SSD is de beste upgrade voor een trage laptop of pc. We leggen in dit artikel uit waar die enorme snelheidswinst vandaan komt en wat het fundamentele verschil is tussen deze twee opslagtechnieken.

Iedereen die zijn computer of laptop een tweede leven wil geven, krijgt vaak hetzelfde advies: vervang de oude harde schijf door een SSD. De snelheidswinst is direct merkbaar bij het opstarten en het openen van programma's. Maar waar komt dat enorme verschil in prestaties vandaan? Het antwoord ligt in de fundamentele technologie die schuilgaat onder de behuizing van deze opslagmedia.

De vertraging van mechanische onderdelen

Om te begrijpen waarom een Solid State Drive (SSD) zo snel is, moeten we eerst kijken naar de beperkingen van de traditionele harde schijf (HDD). Een HDD werkt met magnetische roterende platen. Dat kun je vergelijken met een geavanceerde platenspeler. Wanneer je een bestand opent, moet een fysieke lees- en schrijfkop zich naar de juiste plek op de draaiende schijf verplaatsen om de data op te halen. Dat fysieke proces kost tijd, wat we latentie noemen. Hoe meer de data op de schijf verspreid staat, hoe vaker de kop heen en weer moet bewegen en wachten tot de juiste sector onder de naald doordraait. Dit mechanische aspect is de grootste vertragende factor in traditionele opslag.

©Claudio Divizia

Flashgeheugen en directe gegevensoverdracht

Een SSD rekent definitief af met deze wachttijden omdat er geen bewegende onderdelen in de behuizing zitten. De naam 'Solid State' verwijst hier ook naar; het is een vast medium zonder rammelende componenten. In plaats van magnetische platen gebruikt een SSD zogenoemd NAND-flashgeheugen. Dat is vergelijkbaar met de technologie in een usb-stick, maar dan veel sneller en betrouwbaarder. Omdat de data op microchips wordt opgeslagen, is de toegang tot bestanden volledig elektronisch. Er hoeft geen schijf op toeren te komen en er hoeft geen arm te bewegen. De controller van de SSD stuurt simpelweg een elektrisch signaal naar het juiste adres op de chip en de data is direct beschikbaar.

Toegangstijd en willekeurige leesacties

Hoewel de maximale doorvoersnelheid van grote bestanden bij een SSD indrukwekkend is, zit de echte winst voor de consument in de toegangstijd. Een besturingssysteem zoals Windows of macOS is constant bezig met het lezen en schrijven van duizenden kleine systeembestandjes. Een harde schijf heeft daar enorm veel moeite mee, omdat de leeskop als een bezetene heen en weer moet schieten. Een SSD kan deze willekeurige lees- en schrijfopdrachten (random read/write) nagenoeg gelijktijdig verwerken met een verwaarloosbare vertraging. Dat is de reden waarom een pc met een SSD binnen enkele seconden opstart, terwijl een computer met een HDD daar soms minuten over doet.

©KanyaphatStudio

Van SATA naar NVMe-snelheden

Tot slot speelt de aansluiting een rol in de snelheidsontwikkeling. De eerste generaties SSD's gebruikten nog de SATA-aansluiting, die oorspronkelijk was ontworpen voor harde schijven. Hoewel dat al een flinke verbetering was, liepen snelle SSD's tegen de grens van deze aansluiting aan. Moderne computers maken daarom gebruik van het NVMe-protocol via een M.2-aansluiting. Deze technologie communiceert rechtstreeks via de snelle PCIe-banen van het moederbord, waardoor de vertragende tussenstappen van de oude SATA-standaard worden overgeslagen. Hierdoor zijn snelheden mogelijk die vele malen hoger liggen dan bij de traditionele harde schijf.

Populaire merken voor SSD's

Als je op zoek bent naar een betrouwbare en snelle SSD, is er een aantal fabrikanten dat de markt domineert. Samsung wordt door velen gezien als de marktleider op het gebied van flashgeheugen en staat bekend om de uitstekende prestaties van hun EVO- en PRO-series. Daarnaast is Western Digital (WD) een vaste waarde; dit merk heeft de transitie van traditionele harde schijven naar SSD's succesvol gemaakt met hun kleurgecodeerde (Blue, Black en Red) series voor verschillende doeleinden. Ook Transcend is een uitstekende keuze; dit merk staat al jaren bekend om zijn betrouwbare geheugenproducten en biedt duurzame SSD's die lang meegaan. Tot slot bieden merken als Kingston en Seagate betrouwbare alternatieven die vaak net iets vriendelijker geprijsd zijn, zonder dat je daarbij veel inlevert op stabiliteit.