ID.nl logo
Zo maak je met ESPHome apparaten geschikt voor je smarthome
© Anton - stock.adobe.com
Huis

Zo maak je met ESPHome apparaten geschikt voor je smarthome

ESPHome is een handig programma om je eigen smarthome-apparaten te maken die met Home Assistant kunnen communiceren. Oorspronkelijk werden alleen ESP8266- en ESP32-microcontrollerbordjes ondersteund, maar ondertussen zijn ook de Raspberry Pi Pico W en andere bordjes met de RP2040-microcontroller hiervoor geschikt.

In dit artikel gaan we aan de slag met ESPHome op een Raspberry Pi Pico W en laten we zien waarop je zoal moet letten:

  • ESPHome installeren op Raspberry Pi
  • Led laten knipperen
  • Led van kleur laten veranderen
  • I2C-sensor aansluiten (voor bijvoorbeeld temperatuur, luchtvochtigheid en luchtdruk)

Ook interessant: Zo breid je met microcontrollers je computer uit met extra functies

Code downloaden In dit artikel worden wat voorbeelden van stukken code gegeven. Omdat overtikken van code erg foutgevoelig is, kun je die code beter downloaden en daarna bekijken of kopiëren. Zie het bestand esphomecode.txt voor de stukken code die in dit artikel genoemd worden.

Met ESPHome, van de makers van het opensource-domoticaproject Home Assistant, maak je je eigen smarthome-apparaten met een ontwikkelbordje en wat sensoren, drukknoppen of leds. In tegenstelling tot andere oplossingen, zoals Arduino of MicroPython, hoef je met ESPHome niet te programmeren, maar definieer je de verschillende aangesloten elektronische componenten en hun gedrag in een configuratiebestand dat het YAML-formaat volgt. ESPHome genereert dan hieruit de programmacode, compileert die tot een firmwarebestand en installeert dat op het apparaat.

Je hebt allereerst een ondersteund ontwikkelbordje nodig of een commercieel product waarin een ondersteunde chip zit. ESPHome is, zoals de naam al aangeeft, oorspronkelijk ontwikkeld voor Espressifs ESP8266- en ESP32-microcontrollers. Sinds ESPHome 2022.11 is ook de RP2040 ondersteund, de chip in de populaire Raspberry Pi Pico W. Nog niet alles wat met Espressifs-chips werkt, functioneert op de RP2040. Er zijn ook minder voorbeeldconfiguraties voor de RP2040 te vinden. Vandaar dat we je in dit artikel hiermee op weg helpen.

1 ESPHome installeren

Er zijn diverse manieren om ESPHome te installeren: als Python-pakket, als Docker-image of als Home Assistant-add-on. We gaan hier uit van die laatste manier, die de beste integratie met Home Assistant biedt. Bovendien ondersteunt de wizard op de opdrachtregel op het moment van schrijven nog niet de RP2040. Het dashboard werkt ook wel op de opdrachtregel, maar de add-on biedt net iets meer integratie met Home Assistant.

Ga in de webinterface van Home Assistant in de linkerzijbalk naar Instellingen / Add-ons en klik dan rechts onderaan op Add-on Winkel. Klik op ESPHome en dan op Installeer. Nadat de add-on is geïnstalleerd, schakel je Start bij opstarten in, zodat de add-on automatisch samen met Home Assistant zelf opstart. Schakel ook Weergeven in zijbalk in. Je kunt dan altijd eenvoudig het dashboard van ESPHome openen door in de zijbalk op ESPHome te klikken.

Installeer de add-on van ESPHome in Home Assistant.

Raspberry Pi Pico W

Die heb je nodig voor dit project!

2 Apparaatconfiguratie aanmaken

Als je het dashboard hebt geopend, klik je rechtsonder op New device en vervolgens op Continue. Geef je apparaat een naam, klik op Next en kies als apparaattype Raspberry Pi Pico W. ESPHome maakt nu een minimale configuratie en toont een encryptiesleutel om de communicatie met Home Assistant te versleutelen. Die vinden we later ook in de configuratie terug, dus negeer dit gerust. Klik tot slot op Install.

ESPHome biedt verschillende manieren aan om de firmware op je Raspberry Pi Pico W te installeren, maar niet alle manieren zijn altijd mogelijk. Omdat er nog geen ESPHome-firmware op je Raspberry Pi Pico W staat, is de eerste methode (via wifi) nog niet mogelijk. De optie Plug into the computer running ESPHome Dashboard is om dezelfde reden ook niet beschikbaar. Je kunt echter altijd kiezen voor Manual download. Deze optie geeft je instructies over hoe je de installatie moet uitvoeren. Ondertussen genereert ESPHome de firmware, wat overigens een hele tijd kan duren als je Home Assistant op een Raspberry Pi draait.

Kies hoe je de firmware op je Raspberry Pi Pico W installeert.

3 Firmware installeren

Koppel je Raspberry Pi Pico W los van de usb-poort van je computer, houd de BOOTSEL-knop ingedrukt terwijl je het bordje opnieuw aansluit en laat dan de knop weer los. Hierdoor verschijnt er een schijf met de naam RPI-RP2 in je bestandsbeheerder. Klik in het ESPHome-dashboard op Download project en sleep het .uf2-bestand naar de schijf in je bestandsbeheerder. Zodra de schijf verdwijnt, draait je Raspberry Pi Pico W de ESPHome-firmware en kun je op Close klikken.

Als je nu in het dashboard van ESPHome op Logs klikt bij het kadertje van je Raspberry Pi Pico W-configuratie, zie je de logs die het bordje uitstuurt, naar keuze via usb of wifi. En met een klik op Edit bekijk je de standaardconfiguratie die ESPHome voor je apparaat heeft aangemaakt.

Download de firmware de eerste keer handmatig als .uf2-bestand.

Wat werkt er nog niet? De ondersteuning van de RP2040 in ESPHome is nog relatief nieuw. Daardoor werkt sommige functionaliteit die je als vanzelfsprekend zou beschouwen op de ESP8266 en ESP32 nog niet. We beschrijven hier de toestand in ESPHome 2023.8. Mogelijk is de ondersteuning al uitgebreid tegen dat je dit leest. De belangrijkste functionaliteit die je moet missen, is MQTT en bluetooth low-energy.

Op RP2040-microcontrollerbordjes met een andere wifi-chip dan die van de Raspberry Pi Pico W is ook geen wifi ondersteund, wat ze heel wat minder nuttig maakt. En wat wel werkt, is natuurlijk minder lang getest dan op de ESP8266 en ESP32. Desondanks is ESPHome al heel bruikbaar op de Raspberry Pi Pico W.

4 Led knipperen

Het eerste wat je weleens zult willen doen met een Raspberry Pi Pico W, is de ingebouwde led gebruiken, bijvoorbeeld om je iets te melden. Dat kan in ESPHome met de component output van het platform gpio waarvoor je het juiste pin-nummer instelt. Voor de Raspberry Pi Pico (de versie zonder wifi) is de ingebouwde led aangesloten op GPIO25. Bij de Raspberry Pi Pico W is de ingebouwde led aangesloten op de wifi-chip, de Infineon CYW43439. ESPHome definieert hiervoor een pseudo-pin, GPIO32. Maar het programma definieert ook een alias LED die op beide bordjes naar het juiste pinnummer verwijst.

Open dus de configuratie van je Raspberry Pi Pico W in het dashboard met een klik op Edit bij het kadertje en voeg aan het einde de volgende YAML-code toe:

De code kun je downloaden van deze pagina en daarna vanuit een programma als Kladblok overnemen.

Dit definieert een uitvoer met id genaamd led die naar de ingebouwde led verwijst, en elke seconde de led een halve seconde inschakelt en een halve seconde uitschakelt. Let op dat je de spaties van de inspringingen correct overneemt, want daarvoor is YAML zeer gevoelig. Klik bovenaan rechts op Install en kies Wirelessly om de nieuwe firmware via wifi op je Raspberry Pi Pico W te installeren.

Nadat ESPHome op je Raspberry Pi Pico W staat, kun je updates van je firmware via wifi installeren.

5 Led dimmen

Met een GPIO-uitvoer kun je een GPIO-pin aan- of uitzetten door er een spanning van 3,3 V respectievelijk 0 V (GND) op te zetten. Dat zal een erop aangesloten led dus ontsteken respectievelijk doven. Maar met PWM (pulse-width modulation) kun je een deel van de tijd 3,3 V en een deel van de tijd 0 V op de pin zetten. Door de verhouding tussen beide tijden te variëren, zal een aangesloten led zwakker of sterker schijnen. Zo kun je dus een led dimmen.

De ingebouwde led van de Raspberry Pi Pico W ondersteunt geen PWM, maar als je op elk van de andere GPIO-pinnen een led aansluit, kun je die dimmen. Steek je Raspberry Pi Pico W hiervoor in een breadboard en sluit de anode (het langere pootje) van een led op GPIO15 van de Raspberry Pi Pico W aan. Verbind dan de kathode (het kortere pootje) via een weerstand van 220 Ω met een van de GND-pinnen van de Raspberry Pi Pico W. Voeg dan de volgende code aan je ESPHome-configuratie toe (en verwijder de vorige code voor de ingebouwde led):

De code kun je downloaden van deze pagina en daarna vanuit een programma als Kladblok overnemen.

Sluit een led aan op GPIO15 om deze te kunnen dimmen.

Dimmen vanuit Home Assistant

Sluit je Raspberry Pi Pico W nu weer via usb aan. Nadat je deze firmware hebt geïnstalleerd, is het tijd om je ESPHome-apparaat aan Home Assistent toe te voegen. Normaal gesproken krijg je linksonder bij Meldingen al een melding dat Home Assistant een nieuw apparaat van het type ESPHome heeft ontdekt. Klik op Check it out en daarna in het kader van het ontdekte apparaat op Configureren. Bevestig dat je het apparaat wilt toevoegen. Daarna vind je hem bij de apparaten van Home Assistant en kun je de led met de schuifbalk dimmen.

Dim de led in het dashboard van Home Assistant.

7 Ledstrip

ESPHome ondersteunt al even adresseerbare ledstrips met RGB-leds, zoals de NeoPixels. Maar de componenten NeoPixelBus en FastLED die het daarvoor gebruikt op een ESP8266 en ESP32 werken niet op een RP2040. Daarvoor gebruik je bij een Raspberry Pi Pico W een component light met het platform genaamd rp2040_pio_led_strip, dat gebruikmaakt van PIO (Programmable Input Output) op de RP2040. Zo stuur je bijvoorbeeld een ledstrip met acht WS2812B-leds aan op pin 15:

De code kun je downloaden van deze pagina en daarna vanuit een programma als Kladblok overnemen.

Ontkoppel je Raspberry Pi Pico W en verwijder eventueel aangesloten componenten. Verbind dan de pin DIN of DI van de ledstrip met GPIO15 van de Raspberry Pi Pico W, GND met GND en de voedingspin (in ons voorbeeld als 4-7VDC aangeduid) met de pin VBUS van de Raspberry Pi Pico W (daarop staat 5 V van de usb-aansluiting). Sluit dan je Raspberry Pi Pico W weer aan en schrijf de firmware erheen. Je kunt nu de kleuren van de ledstrip in Home Assistant aansturen.

Sluit de pinnen van je NeoPixel-ledstrip correct aan.

Lees ook: Ledstrips voor buiten

Aan de slag met programmeerbare buitenverlichting

8 I²C-apparaten

Iets anders waar je bij de Raspberry Pi Pico W zeker rekening mee dient te houden, is de I²C-bus. Heel wat componenten sluit je aan via I²C. Die gebruiken naast een voedingspin en GND twee pinnen: SDA om data uit te wisselen en SCL voor een kloksignaal. Maar ESPHome ondersteunt alleen I²C op pinnen die als I2C0 zijn aangeduid op de pinout. Dat betekent dus dat alleen de volgende combinaties bruikbaar zijn voor SDA/SCL: GPIO0/GPIO1, GPIO4/GPIO5, GPIO8/GPIO9, GPIO12/GPIO13, GPIO16/GPIO17 of GPIO20/GPIO21.

De meeste pinnen op de Raspberry Pi Pico W kun je voor meerdere doeleinden gebruiken. Omdat GPIO20/GPIO21 alleen voor I2C0 SDA/I2C0 SCL zijn aangeduid en geen alternatieve functies hebben, zijn deze aan te raden als je I²C op de Raspberry Pi Pico W wilt gebruiken. Zo houd je de andere pinnen vrij voor andere mogelijke doeleinden.

Let op: ESPHome zal niet opstarten wanneer je niet-ondersteunde I²C-pinnen definieert. Je kunt de firmware in dat geval ook niet meer via wifi of usb updaten. Ben je in deze ongelukkige situatie verzeild geraakt, voer dan een handmatige update uit via het .uf2-bestand met een correcte configuratie. Daarna start ESPHome wel weer op.

Gebruik in ESPHome alleen de I²C-pinnen die als I2C0 zijn aangeduid.

9 I²C-sensor aansluiten

Als voorbeeld van het gebruik van I²C sluiten we een BME280-sensor aan, die de temperatuur, luchtvochtigheid en luchtdruk meet. Ontkoppel je Raspberry Pi Pico W en sluit SDA van de sensor op GPIO20 aan (let op: in de Adafruit-versie van het BME280-sensorbordje SDI genoemd), SCL op GPIO21 (bij Adafruit SCK genoemd), GND op GND en VIN op 3V3. Voeg dan de volgende ESPHome-configuratie toe:

De code kun je downloaden van deze pagina en daarna vanuit een programma als Kladblok overnemen.

Hoe gezond is jouw omgeving?

Je meet het met een luchtkwaliteitsmeter

Het adres is 0x77 voor het Adafruit-BME280-sensorbordje. Heb je een BME280-sensorbordje van een andere fabrikant, dan is het adres waarschijnlijk 0x76. Installeer deze firmware op je Raspberry Pi Pico W en bekijk daarna aandachtig de logs. Krijg je te zien dat ESPHome je sensor niet vindt, verander dan het I²C-adres en/of kijk de verbindingen nog eens goed na.

Sluit de BME280 op pinnen GPIO20 en GPIO21 van de Raspberry Pi Pico W aan.

10 RP2040-ondersteuning

Als je aandachtig de configuratie bekijkt die het ESPHome-dashboard voor je genereert, zie je dat in de platformconfiguratie het volgende staat:

De code kun je downloaden van deze pagina en daarna vanuit een programma als Kladblok overnemen.

Onder de motorkap maakt ESPHome gebruik van PlatformIO, maar die ondersteunt de Raspberry Pi Pico W officieel nog niet. Daarom dat ESPHome voor de RP2040-microcontroller de versie van Max Gerhardt gebruikt, die je in de code hierboven bij platform_version ziet staan. Gerhardt heeft niet alleen ondersteuning voor de Raspberry Pi Pico W toegevoegd, maar ook voor andere ontwikkelbordjes met de RP2040-chip.

Helaas kun je op deze manier niet een bordje zoals de Arduino Nano RP2040 Connect met wifi gebruiken in ESPHome. Die gebruikt immers de u-blox NINA-W102 voor wifi in plaats van de Infineon CYW43439 van de Raspberry Pi Pico W. Maar je kunt wel een bordje zonder wifi gebruiken, al zal dat dan niet met Home Assistant kunnen communiceren.

11 RP2040 zonder wifi

Een van die ontwikkelbordjes met een RP2040 zonder wifi is de XIAO RP2040 van Seeed Studio. Op het bordje is een WS2812-RGB-led gemonteerd, die is verbonden met GPIO12. De led moet je overigens eerst nog inschakelen door GPIO11 aan te zetten. Verder is het bordje op twee rijen voorzien van in totaal 14 GPIO-pinnen waarop je externe componenten kunt aansluiten.

Dat maakt dat je met dit minuscule bordje talloze zaken kunt automatiseren. Sluit bijvoorbeeld een sensor aan en verander de kleur van de RGB-led, afhankelijk van het overschrijden van een drempelwaarde. ESPHome maakt dit vrij eenvoudig, omdat je hiermee ook lokaal op het microcontrollerbordje zaken kunt automatiseren zonder dat er wifi-communicatie met Home Assistant nodig is. Het gebrek aan wifi op RP2040-bordjes hoeft je dus niet tegen te houden om ESPHome in te zetten.

De Seeed Studio XIAO RP2040 is een minuscuul ontwikkelbordje met RP2040-microcontroller en RGB-led.

12 Kleureffecten

Als voorbeeld tonen we hoe je de RGB-led van de XIAO RP2040 aanstuurt in ESPHome:

De code kun je downloaden van deze pagina en daarna vanuit een programma als Kladblok overnemen.

 Merk op dat we hier geen wifi configureren en dat we het bordje als seeed_xiao_rp2040 aanduiden. De RGB-led configureren we als een rp2040_pio_led_strip op pin 12 met één led en een lichteffect dat willekeurige kleuren toont. Na het opstarten van de microcontroller schakelen we pin 11 in en starten we daarna het effect. Sla dit bestand op en installeer het handmatig op de XIAO RP2040.

▼ Volgende artikel
Bedien je slimme apparaten met een zelfgebouwd touchscreen
© InfiniteFlow - stock.adobe.com
Huis

Bedien je slimme apparaten met een zelfgebouwd touchscreen

Houd je van knutselen én automatiseer je alles in en om je huis met Home Assistant? Kijk dan zeker eens naar ESPHome. Je kunt eindeloos variëren met componenten. Dankzij de koppeling met Home Assistant bouw je gemakkelijk en voor weinig geld een lichtschakelaar of sensor, om maar wat te noemen. De LVGL-bibliotheek zorgt ervoor dat je nu ook eenvoudig met een touchscreen en zelfbedachte gebruikersinterface kunt werken. We laten zien hoe dat werkt met tips voor passende projecten.

In dit artikel laten we zien hoe je een touchscreen-interface bouwt voor Home Assistant met ESPHome en LVGL:

  • Installeer ESPHome en configureer een ESP32-microcontroller voor je project
  • Sluit een touchscreen aan en stel de juiste GPIO-pinnen en drivers in
  • Gebruik LVGL-widgets voor een interactieve interface
  • Integreer je touchscreen met Home Assistant voor directe bediening van je slimme apparaten

Lees ook: 5 fouten die je niet moet maken in je smarthome

Code downloaden

In dit artikel staat een voorbeeld van wat YAML-code. Omdat YAML erg gevoelig is voor foute spaties, kun je die code beter downloaden en daarna bekijken of kopiëren. In het bestand espcode.txt staan alle regels voorbeeldcode zoals ze in dit artikel aan bod komen. Maar je vindt ook een uitgewerkt voorbeeld in het bestand cyd-demo.yaml. Beide bestanden zijn hier te downloaden.

Uitgewerkt voorbeeld

Het meest uitgewerkte voorbeeld voor de demo met LVGL vind je op deze GitHub-pagina van auteur Gertjan Groen. In de code die je kunt downloaden (ook in het losse bestand cyd-demo.yaml) hebben we ook de RGB-led op de achterzijde toegevoegd, die je bijvoorbeeld als statusmelding kunt gebruiken. Verder is een timer toegevoegd om de backlight te regelen, zodat deze bij inactiviteit wordt uitgeschakeld. Tot slot laten we zien hoe je de GPIO-pinnen kunt gebruiken via de I2C-bus. Op de GitHub-pagina vind je nog meer handige informatie.

ESPHome maakt het heel makkelijk om apparaten te maken voor een slim huis, zoals je eigen sensors. Zo bouwden we eerder al eens een luchtkwaliteitsmonitor, een infraroodzender/ontvanger en een controller met drukknoppen en leds, waarmee je apparaten kunt bedienen en de status aflezen. Hoe je dat doet, lees je in dit artikel: Zo maak je met ESPHome apparaten geschikt voor je smarthome.

De basis voor ESPHome is een kleine, voordelige en zuinige microcontroller, meestal de ESP32. ESPHome ondersteunt enorm veel componenten en biedt daardoor haast onbegrensde mogelijkheden. We helpen je kort op weg met ESPHome, maar gaan ook meteen een stapje verder met de toevoeging van een touchscreen en de LVGL-bibliotheek. Daar kun je sinds augustus 2024 officieel gebruik van maken binnen ESPHome.

Met LVGL kun je aan de hand van widgets een grafische gebruikersinterface opbouwen en weergeven (zie kader ‘Grafische interfaces met widgets’). Soms kom je de term HMI (Human Machine Interface) tegen, waarmee een grafische gebruikersinterface voor het bedienen van apparatuur wordt bedoeld.

De kracht van ESPHome is dat je niet alleen lokaal aangesloten apparaten bedienbaar kunt maken, bijvoorbeeld via een relais, maar ook alle apparaten die je binnen Home Assistant gebruikt.

Grafische interfaces met widgets

LVGL staat voor Light and Versatile Graphics Library. Het is een opensource-bibliotheek die sinds 2016 bestaat. Je kunt ermee werken binnen ESPHome, Arduino, Tasmota en openHASP. Het laatste project is zelfs specifiek bedoeld voor microcontrollerfirmware met LVG.

De bibliotheek is heel licht, waardoor het soepel en snel kan werken op apparaten met beperkte capaciteit, bijvoorbeeld met een microcontroller. Bovendien kan LVGL flexibel met verschillende lay-outs, schermformaten en invoermethodes werken. Naast touchscreens kun je ook bijvoorbeeld muis, toetsenbord, losse knoppen en draaiknoppen toevoegen.

Via meer dan dertig widgets kun je een grafische gebruikersinterface opbouwen. Het uiterlijk is via thema’s en stijlen eenvoudig aan te passen. Bovendien kun je met animaties werken.

LVGL wordt gebruikt in slimme apparaten zoals thermostaten, smartwatches en keukenapparatuur, en zelfs in touchscreens voor industriële omgevingen. Op de website vind je enkele interactieve demo’s voor bekende toepassingen, waarbij de gebruikersinterface in de browser wordt getoond.

Met LVGL kun je via widgets een gebruikersinterface bouwen.

1 Wat gaan we doen?

Met ESPHome kun je relatief eenvoudig apparaatjes voor je slimme huis maken. Een voordeel ten opzichte van bijvoorbeeld Arduino en MicroPython is dat je niet hoeft te programmeren. Je hoeft alleen een configuratiebestand te maken waarin je de gebruikte microcontroller, verbindingsgegevens voor je wifi-netwerk en alle aangesloten componenten aanduidt. Hierna wordt firmware gemaakt en weggeschreven op je microcontroller. Alleen die eerste keer is dit soms wat lastig. Heb je het eenmaal werkend? Alle keren erna kun je heel eenvoudig de configuratie aanpassen en over-the-air (OTA) naar de microcontroller sturen.

In dit artikel gaan we met LVGL werken. Hiermee kun je binnen ESPHome grafische interfaces maken via widgets. Voor veel projecten zul je daarom niet eens componenten hoeven aan te sluiten, maar heb je genoeg aan een touchscreen. Denk bijvoorbeeld aan een lichtknop en helderheidsregeling voor een slimme lamp in Home Assistant, zoals we in dit artikel demonstreren. Je kunt natuurlijk ook geavanceerdere gebruikersinterfaces maken voor vrijwel elk apparaat in Home Assistant.

©pozitivo - stock.adobe.com

Je kunt bijvoorbeeld zelf een gebruikersinterface voor je slimme lampen bouwen, zodat je ze eenvoudig kunt bedienen.

2 Wat heb je nodig?

Wat hardware betreft, is het vrij eenvoudig. De ESP32-chip heeft snel de voorkeur boven de verouderde ESP8266-versie, zeker als je met een touchscreen gaat werken. De Raspberry Pi Pico W (zie gelijknamig kader) is ook een optie, maar die wordt nog niet volledig ondersteund binnen ESPHome.

Makkelijk om mee te starten is een eenvoudig ontwikkelbordje rondom de ESP32 dat je voor ongeveer 5 euro kunt aanschaffen. Het is wel fijn als je hier goede documentatie bij hebt, zodat je op zijn minst weet waar alle aansluitingen zitten.

Er zijn diverse varianten van de ESP32-module. Bekende opties zijn de ESP-WROOM-32E, ESP32-C3 en ESP32-S3. De ESP32-C3 wordt vaak in extra compacte bordjes gebruikt, die je onder de naam ‘super mini’ tegenkomt – handig als je niet veel aansluitingen nodig hebt of niet veel ruimte hebt.

De ESP32-S3 is een fijne optie vanwege de beschikbaarheid van PSRAM (Pseudo Static RAM), een voordelig type werkgeheugen dat onder meer nuttig is bij grafische toepassingen. Staat een touchscreen centraal in jouw project en wil je snel van start, overweeg dan een model met ingebouwde ESP32-chip (zie volgende paragraaf).

De ESP32-module is in verschillende uitvoeringen verkrijgbaar.

Raspberry Pi Pico W

De Raspberry Pi Pico is een voordelige en flexibele serie ontwikkelbordjes rondom de RP2040-microcontroller. De eerste versie verscheen in januari 2021. De Pico W is vanwege de wifi-connectiviteit een interessante optie voor ESPHome. Recent werd de Pico 2 W aangekondigd die op meerdere fronten is verbeterd. Dat model is op het moment van schrijven echter nog niet geschikt voor ESPHome.

De Raspberry Pi Pico W is ook bruikbaar in Home Assistant.

3 Touchscreen

Als je een touchscreen gaat gebruiken in je ESPHome-project, dan kun je eventueel een los exemplaar op de microcontroller aansluiten en configureren. Maar je kunt ook een touchscreen met ingebouwde ESP32 kiezen. Dat is vaak veel handiger en goedkoper. Je hoeft niet te solderen en kunt direct een gebruikersinterface bouwen in YAML-code. Het scheelt ook wat tijd. Bovendien zijn er zelfs modellen compleet met behuizing.

Kies een scherm dat door ESPHome wordt ondersteund. De website van ESPHome geeft goede suggesties. Je kunt ook afgaan op ervaringen van anderen. Het kan dan een iets grotere uitdaging zijn om de juiste configuratie voor je display in ESPHome te vinden. Je zult daarbij waarschijnlijk wel even moeten experimenteren, niet alleen bij het instellen van je display, maar ook bijvoorbeeld voor het touchgedeelte. Zelfs bij het vrij gangbare touchscreen dat we in dit artikel gebruiken, was dat een beetje prutsen.

Kies een touchscreen dat door ESPHome wordt ondersteund.

4 Scherm met ESP32

Voor dit artikel hebben we een eenvoudige ESP32-2432S028 gebruikt, met een resistief touchscreen van 2,8 inch met 240 × 320 pixels. Dit model wordt ook wel de ‘Cheap Yellow Display’ genoemd, wat vooral met de gele printplaat te maken heeft.

Er zijn meerdere varianten. Zo wordt in de schermpjes vaak de ILI9341-chip als aansturing gebruikt, maar soms ook de ILI9342, zoals in ons exemplaar. Dat vergt dan een heel kleine, maar noodzakelijke aanpassing in je configuratie.

Je kunt het scherm flexibel inzetten voor je IoT-projecten. Zoek je een wat groter touchscreen, dan kun je bijvoorbeeld de CrowPanel van Elecrow overwegen. Die is er in een versie van 5 inch (ca. 32 euro) en 7 inch (ca. 42 euro), inclusief acrylbehuizing en verzending via de fabrikant. Beide versies hebben een touchscreen met hoge resolutie van 800 × 480 pixels en zijn voorzien van de modernere ESP32-S3-chip. Het touchscreen is capacitief, wat zeker voor kleinere bedieningselementen fijner werkt dan het resistieve touchscreen in ons goedkope alternatief.

Tegenwoordig bestaan er ook ronde touchscreens. Een leuke optie (zij het met beperkte schermruimte) is de ESP32-2424S012 met een ESP32-C3-microcontroller, een rond kleuren-touchscreen van 1,28 inch en in een witte of zwarte behuizing. Makerfabs heeft een vergelijk schermpje zonder behuizing. De LilyGo T-RGB heeft een wat groter 2,1inch-scherm (zonder behuizing), maar is ruim twee keer zo duur.

De ESP32-2432S028 is een voordelig scherm (onder), een wat duurder alternatief is het capacitieve 5inch-aanraakscherm met ESP32 van Elecrow (boven).

5 Add-ons voor ESPHome

Hoewel je bijvoorbeeld een pc met Python kunt gebruiken voor het bewerken van je configuratiebestanden en het flashen van de microcontroller met de software voor ESPHome, is het meestal veel makkelijker om de add-on voor ESPHome binnen Home Assistant te gebruiken. Dat geeft ook een ander groot voordeel: je kunt de configuratie voor alle apparaten met ESPHome binnen Home Assistant beheren. Je zult zeker in de testfase veel wijzigingen aan de configuratie moeten maken.

Via de add-on voor ESPHome voeg je eenvoudig microcontrollers toe.

6 Microcontroller toevoegen

We gaan nu een verse microcontroller toevoegen. Je kunt eventueel ESPHome Web gebruiken om de microcontroller voor te bereiden voor gebruik met ESPHome, maar wij geven zoals gezegd de voorkeur aan de ESPHome-add-on, die je binnen Home Assistant kunt openen.

Je kunt voor deze methode de microcontroller gewoon via usb aansluiten op je eigen pc, maar dit vereist wel dat je Home Assistant opent via een beveiligde https-verbinding. Lukt dat niet? Als alternatief kun je de microcontroller ook via usb aansluiten op het systeem met Home Assistant zelf, voordat je verder gaat in ESPHome.

Het dashboard van ESPHome toont alle toegevoegde apparaten.

Ook leuk: Werk met wat je hebt: creëer je eigen alarmsysteem met Home Assistant

7 Configuratie

Klik binnen ESPHome op New device om een nieuwe microcontroller te initialiseren. Vul bij Name een naam in voor het apparaat. Bij Network name vul je de naam (SSID) in van het wifi-netwerk waarmee de microcontroller moet verbinden en bij Password het bijbehorende wachtwoord. Klik dan op Next.

In de volgende stap zal ESPHome een configuratiebestand maken, firmware bouwen en de microcontroller flashen. Klik daarvoor dus eerst op Connect. Als het goed is, kun je nu de com-poort selecteren waarmee de microcontroller is verbonden. Zie je geen com-poort, dan zul je eerst drivers moeten installeren. De instructies krijg je als je het venster sluit zonder een com-poort te selecteren. Als de verbinding is gelukt, zal de installatie verdergaan. Lukt het niet? Dan kun je kiezen voor Skip this step gevolgd door een handmatige configuratie.

Vul een naam in en de details voor het wifi-netwerk.

Toepassingen voor een touchscreen

Er zijn veel leuke toepassingen voor een touchscreen. Zo kun je bijvoorbeeld een soort weerstation maken, dat je voorziet van actuele informatie van Home Assistant. Ook kun je live de opbrengst van je zonnepanelen laten zien of het verbruik in huis. Je zou een schermpje voor Music Assistant kunnen maken met bijvoorbeeld de weergave van het nummer en volumeregeling (zie ook: Met Music Assistant ben jij de baas over jouw muziekcollectie). Tot slot kun je een scherm gebruiken voor statusmeldingen of loggegevens.

8 Touchscreen met ESP32

We gebruiken in dit artikel zoals gezegd de ESP32-2432S028 als voorbeeld. Dit is een touchscreen met ingebouwde ESP32-chip. Dit apparaatje kun je direct toevoegen aan ESPHome: precies zoals in paragraaf 7 staat omschreven, al moesten we in dit geval na het aanwijzen van de com-poort wel de boot-knop even indrukken.

Overigens bevat het apparaat meestal een voorgeprogrammeerde demo met een gebruikersinterface op basis van LVGL. Die zie je als je hem zo uit de doos op een voeding aansluit. Je kunt daarmee meteen de werking controleren. Je zult bij een model met resistief aanraakscherm overigens iets harder moeten drukken dan je misschien gewend bent.

We gebruiken dit voordelige 2,8inch-aanraakscherm, dat ook wel ‘Cheap Yellow Display’ wordt genoemd.

9 Schermconfiguratie

Na het toevoegen van je touchscreen heb je direct een basisconfiguratie voor ESPHome. Via Edit kun je deze configuratie aanpassen. Zowel voor het aansturen van het display als de registratie van het aanraken wordt SPI (Serial Peripheral Interface) gebruikt. Voor onze ESP32-2432S028 is dit de configuratie, rekening houdend met de gebruikte interne GPIO-pinnen:

We voegen nu eerst de configuratie van het display toe en in paragraaf 11 het touchgedeelte. Voor het display is de configuratie als volgt:

Merk op dat er ook een (oudere) variant van dit touchscreen is met de ILI9341. In dat geval gebruik je model: ILI9341 en invert_colors: false. Na het maken van de aanpassingen kies je Install. Je kunt nu kiezen hoe je de firmware wilt overbrengen. Meestal kies je Wirelessly voor over-the-air-updates. Het apparaat hoeft daarbij niet meer met jouw pc te zijn verbonden.

Binnen ESPHome kun je eenvoudig de configuratie bewerken.

10 LVGL-bibliotheek

Binnen ESPHome kon je voorheen met displays werken door binnen de component display met lambda bijvoorbeeld teksten met een bepaald lettertype naar je scherm te sturen. Als je LVGL gaat gebruiken, gebruik je geen lambda meer, maar alleen LVGL en widgets. Als eerste voegen we de LVGL-bibliotheek toe aan de YAML-code:

lvgl:
  buffer_size: 25%

De optie buffer_size is ons geval noodzakelijk, vanwege de afwezigheid van PSRAM. In paragraaf 13 voegen we ook nog widgets toe. Omdat we dat hier nog niet hebben gedaan, zie je na het flashen als het goed is een demo met een knop, checkbox, cirkel met tekst en schuifbalk.

11 Configuratie touchscreen

Bediening via het scherm is nog niet mogelijk. Daarvoor moeten we het touchscreen toevoegen aan de configuratie van ESPHome:

Bewaar de aanpassingen en installeer de nieuwe firmware. Controleer of je de demo goed kunt bedienen. De regels onder on_touch zorgen dat in de logs de geregistreerde coördinaten worden getoond. Er kunnen aanpassingen nodig zijn in de regels onder calibration en transform.

12 Backlight

Het display is voorzien van een achtergrondverlichting (backlight) via pin 21. We definiëren deze output als volgt:

Daarna configureren we de achtergrondverlichting, waarbij we verwijzen naar de hierboven gedefinieerde output.

Na het flashen zal de backlight standaard aanstaan. Eventueel kun je deze vanuit Home Assistant aan- en uitzetten en de helderheid ervan regelen, bijvoorbeeld op basis van afwezigheid. Je kunt ook een script maken om de helderheid bij inactiviteit terug te brengen. Daarvoor verwijzen we je naar het uitgewerkte voorbeeld op GitHub (zie kader ‘Code downloaden’).

Binnen Home Assistant kun je eventueel ook de backlight aan- en uitzetten.

13 Widgets toevoegen

Onder de regel lvgl kun je nu de gewenste LVGL-componenten toevoegen aan je YAML-configuratie. Denk aan bijvoorbeeld knoppen, schuifregelaars, grafieken of labels. In dit voorbeeld voegen we aan de bovenkant alleen twee widgets toe voor een dimbare led, te weten een schakelaar (button) en schuifregelaar (slider).

De meeste opties dienen voor het positioneren van de widget. We geven bijvoorbeeld de breedte (width) en hoogte (height) aan, halen de widgets iets van de rand of met x en y, en regelen de uitlijning met align. Het gedeelte bij on_click zorgt dat de bewuste lamp in Home Assistant wordt omgeschakeld bij het klikken op de button. Voor de slider doen we hetzelfde onder on_release. Die acties zijn overigens om veiligheidsredenen niet direct mogelijk. In paragraaf 16 leggen we uit hoe je dit kunt toestaan.

We voegen in dit voorbeeld alleen twee eenvoudige widgets toe.

Cookbook voor ESPHome en LVGL

We houden het hier redelijk eenvoudig, maar je kunt natuurlijk veel geavanceerdere gebruikersinterfaces maken. Zo is bijvoorbeeld een geneste structuur mogelijk, kun je op verschillende manieren een grid maken, en met pagina’s individuele schermen of secties in je gebruikersinterface maken. Daarbij kan elke pagina zijn eigen widgets hebben. ESPHome geeft op zijn website in een ‘cookbook’ nog wat praktische voorbeelden voor het werken met LVGL, ook in combinatie met Home Assistant.

De website van ESPHome heeft veel voorbeelden voor het werken met LVGL.

14 Interactie met Home Assistant

De entiteit voor de dimbare lamp heeft in Home Assistant de naam light.wledkantoor. De waardes zijn nodig om de widgets de juiste status te kunnen geven. Daarom voegen we hieronder een binary_sensor toe voor de status (aan of uit) en een sensor voor het helderheidsniveau. We werken vervolgens bij on_state en on_value de widgets bij als de status verandert in Home Assistant. Bij id vul je uiteraard de id van de betreffende widget in.

Gebruik de logfunctie om te zien of bijvoorbeeld een status verandert.

15 Toevoegen aan Home Assistant

De add-on voor ESPHome hebben we gebruikt om de microcontroller van firmware te voorzien. Maar je zult het apparaat hierna nog wel moeten toevoegen aan Home Assistant. Dat is heel eenvoudig: het wordt automatisch gevonden. In Home Assistant zie je via Instellingen / Apparaten en diensten het bewuste apparaat direct terug op het tabblad Integraties. Klik op de knop Toevoegen om het aan Home Assistant toe te voegen.

Het apparaat met ESPHome moet je nog toevoegen aan Home Assistant.

16 Acties toestaan

Als je het touchscreen bedient, zal Home Assistant een melding geven dat het ESPHome-apparaat heeft geprobeerd een actie in Home Assistant uit te voeren. Standaard is dit om veiligheidsredenen niet toegestaan, maar dit is eenvoudig op te lossen.

Ga naar Instellingen / Apparaten en klik dan onder het kopje Geconfigureerd op ESPhome. Achter het bewuste apparaat klik je vervolgens op Configureren. Zet een vinkje bij Toestaan dat het apparaat Home Assistant-acties uitvoert. Klik op Verzenden. Hierna zijn alle acties zoals het omschakelen van de lamp en regelen van de helderheid wel toegestaan.

Zorg dat het apparaat acties in Home Assistant mag uitvoeren.

▼ Volgende artikel
Slimme stekkers: welke modellen zijn echt zuinig?
© Proxima Studio - stock.adobe.com
Huis

Slimme stekkers: welke modellen zijn echt zuinig?

Met slimme stekkers verander je je huis eenvoudig in een smart home: steek ze in een gewoon stopcontact, sluit er lampen of je televisietoestel op aan en regel via een app of met je stem bijvoorbeeld dat ze automatisch worden uitgeschakeld. Zo voorkom je onnodig stroomverbruik doordat apparaten niet meer op stand-by blijven staan. Maar slimme stekkers gebruiken zélf ook stroom. Welke zijn zuinig genoeg om écht geld te besparen?

Energie besparen en slimme apparaten gaan uitstekend samen. In dit artikel lees je hoe je geld bespaart door gebruik te maken van de zuinigste slimme stekkers. • Slimme stekkers en stroomverbruik • De zuinigste slimme stekkers op een rij • Waar je op moet letten bij het kopen van slimme stekkers

Ook lezen: Stroomvreters: deze apparaten in huis verbruiken meer energie dan je denkt


Slimme stekker of slim stopcontact?

De termen slimme stekker en slim stopcontact worden door elkaar gebruikt. Dat is een beetje verwarrend, maar wel begrijpelijk: het is een apparaat met aan de ene kant een stekker (voor je 'domme' stopcontact) en aan de andere kant een slim stopcontact. In dit artikel hanteren we de benaming slimme stekker.


Zo bespaart een slimme stekker stroom

Een slimme stekker helpt je stroom besparen door apparaten automatisch uit te schakelen, bijvoorbeeld 's nachts. Zo verbruikt je televisie geen stroom meer in de stand-bymodus. Je kunt instellen dat alle apparatuur op vaste tijden uitschakelt, bijvoorbeeld zodra je gaat slapen. Je kunt ook met één druk op de knop alle lampen en andere apparaten uitschakelen, zodat je niets vergeet. Slimme stekkers uit een hogere prijsklasse bieden bovendien inzicht in je stroomverbruik. Daardoor kun je gerichter energie besparen.

©Proxima Studio - stock.adobe.com

Verbruik van een slimme stekker

Tegenover de besparing staat het eigen stroomverbruik van slimme stekkers. Dat begint bij zo'n 0,3 watt en loopt op tot 2 watt. Niet veel, maar ze staan wel 24 uur per dag en 365 dagen per jaar aan. De zuinigste modellen verbruiken daardoor op jaarbasis 2,6 kWh (0,3 watt × 24 uur × 365 dagen ÷ 1000). Bij een stroomprijs van 0,30 euro per kWh komt dat neer op 0,79 euro per jaar. Een slimme stekker die 2 watt verbruikt kost op jaarbasis 5,26 euro. In een slim huis gebruik je al snel 10 slimme stekkers, waardoor je op jaarbasis aardig wat geld kunt besparen door de zuinigste modellen uit te kiezen.

Kies niet alleen op prijs, maar ook op verbruik Vergelijk je het jaarlijkse stroomverbruik met de aanschafprijs van een slimme stekker (meestal tussen de 5 en 35 euro), dan blijkt al snel dat vooral het stroomverbruik bepalend is voor de totale kosten op de lange termijn. Toch vermelden veel verkopers niets over het energieverbruik.

Denk aan de compatibiliteit

Alleen letten op het stroomverbruik van een slimme stekker is niet genoeg. Het is minstens zo belangrijk dat de stekker goed samenwerkt met jouw slimme netwerk. De meeste modellen werken met Google Home en Amazon Alexa, terwijl Apple HomeKit selectiever is. Check daarom altijd de productbeschrijving om zeker te weten dat de slimme stekker bij jou thuis werkt.

Slimme stekkers die samenwerken met

Google Assistant en met Alexa

Stroomverbruik en verbindingstype

Waar komt het grote verschil in stroomverbruik tussen slimme stekkers vandaan? Dat heeft alles te maken met de verbinding met je thuisnetwerk. De meeste stekkers gebruiken wifi om bereikbaar te blijven, zodat jij ze op afstand kunt bedienen. Maar wifi verbruikt relatief veel energie – het signaal is eigenlijk krachtiger dan nodig is voor dit soort toepassingen.

Een zuiniger alternatief is een hub die het wifisignaal omzet naar een lichter protocol, zoals Zigbee of Z-Wave. Die vormen een soort schakel tussen je netwerk en de slimme stekkers. Het grote voordeel: dit soort verbindingen verbruiken vaak minder dan 0,5 watt.

©Proxima Studio - stock.adobe.com

Zigbee en Z-Wave

De zuinige protocollen die gebruikt worden zijn Zigbee en Z-Wave en die werken allebei prima. Maar ze zijn niet verenigbaar met elkaar. Je zult dus één systeem moeten kiezen. Daarnaast heb je een centrale hub nodig om alles aan elkaar te koppelen. Dat is een kleine investering die zich, door de lagere stroomkosten, snel terugverdient.

Slimme stekkerVerbruik (watt)Protocol
TP-Link Tapo P1151 – 1,5Wifi
TP-Link Tapo P1000,5 – 1Wifi
Shelly Plug S0,9 – 1,5Wifi
Iqore Smart Plug1 – 2Wifi
Aqara Smart Plug0,3 – 0,5Zigbee
Philips Hue Smart Plug0,3 – 0,5Zigbee
IKEA TRETAKTSmart Plug0,3 – 0,5Zigbee
Samsung SmartThings Outlet0,5 – 1,5 WZigbee
Fibaro Wall Plug V20,5 – 1Z-Wave
Qubino Smart Plug0,5 – 1Z-Wave

Verbruik van hubs voor Zigbee en Z-Wave

Voor een compleet beeld moeten we ook kijken naar het stroomverbruik van een Zigbee- of Z-Wave-hub. Zigbee-hubs verbruiken doorgaans tussen de 0,5 en 3 watt. Sluit je meerdere slimme stekkers of andere apparaten aan, dan verdien je dat al snel terug ten opzichte van wifi. Z-Wave-hubs verbruiken wat meer, meestal tussen de 2 en 10 watt.

Ook qua veelzijdigheid zijn er verschillen. De Philips Hue Bridge (Zigbee) is bijvoorbeeld erg zuinig, met een verbruik tussen de 0,5 en 1 watt. Maar deze werkt uitsluitend met Philips Hue-apparaten.

Een slimme start is het halve werk

Zoals je ziet, zijn er heel wat factoren om rekening mee te houden. Breng daarom vooraf in kaart wat je nu nodig hebt én wat je in de toekomst verwacht te gebruiken. Zo voorkom je onnodige kosten en bespaar je op de lange termijn, vooral als je ook let op het energieverbruik per apparaat.


Nog meer energie besparen? ⤵️

Vraag een offerte aan voor verduurzaming: