ID.nl logo
Zo kun je programmeren in Python - Deel 5
© Reshift Digital
Zekerheid & gemak

Zo kun je programmeren in Python - Deel 5

In de href="https://computertotaal.nl/artikelen/pc/zo-kun-je-programmeren-in-python-deel-4/" rel="noopener noreferrer" target="_blank">vorige les</a> toonden we allerlei manieren om de uitvoer van tekst op het scherm aan te passen. In deze les zetten we de stap van je scherm naar bestanden: we gaan gegevens uit bestanden lezen en naar bestanden schrijven. Daarnaast leer je reageren op exceptions: foutmeldingen die Python je geeft als er iets misgaat.

Twee lessen geleden gebruikte je de functie input om wat de gebruiker op zijn toetsenbord intypt te registreren. En in de vorige les toonden we je hoe je met de functie print uitvoer op het scherm toont. Maar in- en uitvoer kan ook via bestanden verlopen. Laten we eens kijken hoe dat gaat.

Hier kun je les vier bekijken.

We beperken ons in deze les tot het lezen en schrijven van tekstbestanden. Je kunt ook met binaire bestanden werken, die willekeurige data in een andere vorm dan tekst kunnen bevatten, maar dat is wat meer werk omdat je de data nog moet interpreteren. Voor de rest werkt dit hetzelfde.

Een tekstbestand lezen

We tonen hier in een voorbeeld hoe je op een Linux-machine zoals een Raspberry Pi met Raspberry Pi OS (tot voor kort Raspbian geheten) het bestand met de lijst van gebruikers uitleest. Ook op macOS werkt dit voorbeeld. Gebruik je Windows, maak dan zelf een bestand aan met de inhoud die we in ons voorbeeld tonen en pas de locatie van het te openen bestand aan in je Python-code.

De eenvoudigste manier om een volledig tekstbestand uit te lezen en op het scherm te tonen, heeft maar twee regels nodig:

with open('/etc/passwd', 'rt') as bestand:

print(bestand.read())

In de eerste regel openen we het bestand met de functie open. Het eerste argument is het bestand dat we willen openen. We hebben hier een volledig pad gebruikt: '/etc/passwd'. Als je een bestand wilt lezen dat in dezelfde directory staat als waarin je de Python-interpreter hebt opgestart, hoef je geen volledig pad door te geven: de bestandsnaam volstaat dan. Met het tweede argument 'rt' geven we aan dat we het bestand willen lezen en dat het om een tekstbestand gaat.

De constructie met with is wat Python een ‘context manager’ noemt. In het with-blok heb je toegang tot het object bestand dat het geopende bestand voorstelt. Na het with-blok wordt het bestand automatisch gesloten, zodat je het niet meer kunt lezen. Dit lijkt vanzelfsprekend, maar dat is het niet: ook zonder with kun je bestanden openen, maar als je dan het bestand na gebruik vergeet te sluiten, kan dit tot problemen leiden. Werk dus nooit met bestanden zonder with.

In de tweede regel roepen we de functie read op het object bestand aan. Deze functie geeft de volledige inhoud van het tekstbestand terug als een string, die we dan met print op het scherm tonen. Op een typisch Linux-systeem ziet de uitvoer er als volgt uit (we tonen hier maar enkele regels):

root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

bin:x:2:2:bin:/bin:/usr/sbin/nologin

Enzovoort

Een tekstbestand regel voor regel lezen

Maar wat als we niet het hele bestand in één keer willen inlezen, maar regel voor regel, bijvoorbeeld omdat we willen testen of de regels aan specifieke voorwaarden voldoen? Geen probleem, ook dat is in Python heel eenvoudig. In plaats van de functie read op je bestand toe te passen, ga je dan met een for-lus door de elementen van het bestand. Het tekstbestand dat je van de functie open terugkrijgt, gedraagt zich immers als een lijst met als elementen de opeenvolgende regels in het bestand.

Een string splitsen

Maar als we die regels een voor een gaan inlezen, moeten we er ook iets mee doen. Zoals je ziet, bevat het bestand /etc/passwd op elke regel allerlei informatie over de gebruiker, telkens afgescheiden door een dubbele punt. We willen elk van die gegevens afzonderlijk uitlezen. Dat gaat eenvoudig met de functie split die we op een string kunnen uitvoeren. Bijvoorbeeld:

>>> 'root:x:0:0:root:/root:/bin/bash'.split(':')

['root', 'x', '0', '0', 'root', '/root', '/bin/bash']

Je ziet hier dat we aan de functie split het teken meegeven dat de verschillende componenten van de string afscheidt: ':'. Het resultaat is een lijst met strings die onderdeel uitmaken van onze lange string, zonder de afscheidingstekens ':'.

De opeenvolgende componenten in de regels van het bestand /etc/passwd hebben overigens de volgende betekenis: gebruikersnaam, ongebruikt, ID van de gebruiker, ID van de groep, volledige gebruikersnaam, persoonlijke map van de gebruiker, shell van de gebruiker.

Een lijst uitpakken

Je kunt nu naar de elementen in de gesplitste string verwijzen met een index, bijvoorbeeld:

>>> informatie = 'root:x:0:0:root:/root:/bin/bash'.split(':')

>>> informatie[0]

'root'

>>> informatie[6]

'/bin/bash'

Maar dat is niet heel duidelijk. Zo willen we informatie[0] eigenlijk gebruiker noemen en informatie[6] de naam shell geven. Gelukkig kun je in Python de elementen van een lijst eenvoudig in één keer aan enkele variabelen toekennen. Dat heet unpacking. In ons voorbeeld gaat dat als volgt:

>>> gebruiker, *_, naam, directory, shell = 'root:x:0:0:root:/root:/bin/bash'.split(':')

>>> gebruiker

'root'

>>> _

['x', '0', '0']

>>> naam

'root'

>>> directory

'/root'

>>> shell

'/bin/bash'

De notatie * gebruik je om een willekeurig aantal elementen uit te pakken. Omdat we in dit geval niet in deze elementen geïnteresseerd zijn, kennen we ze toe aan de variabele met de naam _, vandaar dat we bij het uitpakken *_ gebruiken. We konden dit hier ook vervangen door gebruiker, _, _, _, naam, directory, shell.

Gegevens uit een tekstbestand filteren

Dan weet je nu genoeg om de volgende opdracht uit te voeren: lees het bestand met wachtwoorden regel per regel in en als de shell geen '/usr/sbin/nologin' of '/bin/false' is, toon je de gebruikersnaam, volledige gebruikersnaam en persoonlijke map.

De code ziet er als volgt uit:

with open('/etc/passwd', 'rt') as bestand:

for regel in bestand:

gebruiker, *_, naam, directory, shell = regel.strip().split(':')

if shell not in ['/bin/false', '/usr/sbin/nologin']:

print(' {1} ({0}): {2} ({3})'.format(gebruiker, naam, directory, shell))

We openen dus het bestand /etc/passwd als tekstbestand om te lezen. Voor elke regel in het bestand pakken we de verschillende elementen uit in enkele variabelen. We kijken dan of de shell niet gelijk is aan de twee eerdergenoemde shells. Als aan die voorwaarde is voldaan, tonen we de gebruiker, zijn volledige naam, zijn persoonlijke map en zijn shell.

Er is slechts één nieuwigheid in deze code: de functie strip. Die verwijdert witruimte en nieuwe regels aan het begin en het einde van een string. Dat hebben we hier nodig omdat de shell op het einde van de regel staat en er daar dus een teken voor een nieuwe regel komt. Zonder die aanroep van strip zou de vergelijking in de regel erna niet werken.

Naar een tekstbestand schrijven

Naar een tekstbestand schrijven, verloopt op een vergelijkbare manier als een tekstbestand lezen. We beginnen een with-blok waarin we het bestand openen en daarin schrijven we naar het bestand:

with open('bestand.txt', 'wt') as bestand:

bestand.write('Dit is de eerste regel.\n')

bestand.write('Dit is de tweede regel.\n')

bestand.write('Dit is de derde regel.\n')

Op het einde van elke regel moet je zelf een teken voor een nieuwe regel toevoegen: \n. Een andere manier om een regel naar een tekstbestand te schrijven, is met de functie print, die automatisch een nieuwe regel toevoegt:

print('Dit is de eerste regel.', file=bestand)

Merk op dat we het bestand openen met als tweede argument 'wt', waarmee we aangeven dat we naar het bestand willen schrijven. Op deze manier overschrijven we alle al bestaande inhoud van het bestand, dus let hiermee op!

Als je deze situatie wilt vermijden, kun je open aanroepen met de bestandsmodus 'xt'. Als het bestand nog niet bestaat, doet die hetzelfde als 'wt': je kunt naar het bestand schrijven. Maar als het bestand al bestaat, krijg je een foutmelding:

with open('bestand.txt', 'xt') as bestand:

print('Dit is een test.', file=bestand)

with open('bestand.txt', 'xt') as bestand:

print('Dit is nog een test.', file=bestand)

Traceback (most recent call last):

File "<pyshell>", line 1, in <module>

FileExistsError: [Errno 17] File exists: 'bestand.txt'

Een andere interessante bestandsmodus is 'at' (van ‘append’): hiermee voeg je aan het einde van een bestaand tekstbestand regels toe.

Exceptions afhandelen

In het voorbeeld hierboven zou je waarschijnlijk de foutmelding dat het bestand al bestaat op een nettere manier willen afhandelen. Wat we tot nu toe een foutmelding genoemd hebben, heet in Python een exception. Er bestaan verschillende types exceptions en in je Python-code kun je eenvoudig het optreden van exceptions afvangen. Dat gaat als volgt:

try:

with open('bestand.txt', 'xt') as bestand:

print('Dit is nog een test.', file=bestand)

except FileExistsError:

print('FOUT: Het bestand bestaat al.')

De code binnen het try-blok wordt uitgevoerd zoals normaal. Maar als er binnen dit blok een exception voorkomt, gaat het programma door naar het except-blok. Daarin hebben we aangegeven dat we alleen in de exceptions van het type FileExistsError geïnteresseerd zijn. In het geval er zo een voorkomt, tonen we onze eigen foutmelding. Daarna gaat het programma verder na het except-blok.

Als je meerdere types exceptions wilt afvangen, voeg je meerdere except-blokken toe met elk het andere type exception. Als je voor meerdere types exceptions dezelfde code wilt uitvoeren, dan zet je die exceptions tussen haakjes, zoals hier:

except (ZeroDivisionError, ValueError):

En als je op alle mogelijke exceptions hetzelfde wilt reageren, voeg je gewoon een except-blok zonder de naam van een exception toe, al is dat niet zo vaak zinvol.

Samenvatting

In deze les hebben we geleerd hoe we tekstbestanden kunnen inlezen en strings in onderdelen kunnen splitsen. Ook in de andere richting kun je nu met tekstbestanden werken: je kunt willekeurige tekst naar een bestand schrijven. En doordat je hebt geleerd hoe je exceptions kunt afvangen, hoeven de gebruikers van je programma geen cryptische foutmeldingen van Python meer te krijgen. Omdat je met deze kennis al complexere Python-programma’s kunt schrijven, leer je in de volgende les hoe je je programma meer kunt structureren in functies en modules.

Opdracht

Vraag de gebruiker om een regel zoals root:x:0:0:root:/root:/bin/bash voor gebruik in een wachtwoordbestand op te geven. Schrijf de belangrijkste elementen van de regel naar een afzonderlijke regel in een bestand, in de vorm: Gebruiker: root Naam: root Directory: /root Shell: /bin/bash Zorg dat je programma een heldere foutmelding geeft als de regel niet de correcte vorm voor een wachtwoordbestand heeft.

Uitwerking

regel = input('Voer een regel voor het wachtwoordbestand in: ') try: gebruiker, _, _, _, naam, directory, shell = regel.strip().split(':') with open('wachtwoordbestand', 'wt') as bestand: print('Gebruiker: {}'.format(gebruiker), file=bestand) print('Naam: {}'.format(naam), file=bestand) print('Directory: {}'.format(directory), file=bestand) print('Shell: {}'.format(shell), file=bestand) except ValueError: print('Voer de regel in de volgende vorm in:') print('gebruiker:x:0:0:naam:directory:shell') Dit is een rechtstreekse combinatie van alles wat je in deze les geleerd hebt. Let op: we hebben hier wel gebruiker, _, _, _, naam, directory, shell nodig en niet de kortere versie gebruiker, *_, naam, directory, shell. Met die laatste regel garanderen we immers niet dat de regel uit exact zeven elementen bestaat.

Cheatsheet

exception: een foutmelding in Python pad: de locatie van een bestand, met alle bovenliggende directorynamen erbij

▼ Volgende artikel
Waar voor je geld: 5 accuboormachines met een hoog review-cijfer
© ID.nl
Huis

Waar voor je geld: 5 accuboormachines met een hoog review-cijfer

Bij ID.nl zijn we gek op producten waar je niet de hoofdprijs voor betaalt of die door gebruikers een hoge waardering krijgen. Op Kieskeurig.nl kunnen kopers van producten een review achterlaten en hiermee aangeven hoe goed (of slecht) ze een product vinden. Wij vonden vijf accuboormachines die door gebruikers zijn gewaardeerd met een 7 of hoger.

Consumentenreviews zijn een van de beste manieren om erachter te komen of een product goed of slecht is. Op Kieskeurig.nl kunnen kopers van producten aangeven wat ze ervan vinden, zodat ze potentiële nieuwe kopers kunnen helpen een aankoopbeslissing te maken. Wij vonden vijf accuboormachines die door kopers op Kieskeurig.nl zijn voorzien van een waardering van minimaal 7 van de 10 punten.

Metabo PowerMaxx BS 

De Metabo PowerMaxx BS is een compacte schroefboormachine met een Li‑ion‑accu. Dit model weegt circa 2,08 kg in de verpakking en is voorzien van een koolborstelloze motor. De machine heeft twee snelheden en werkt op 10,8 volt, waardoor hij geschikt is voor lichte boor- en schroefklussen. Door het ergonomische ontwerp ligt het toestel prettig in de hand en kun je nauwkeurig werken. De set wordt geleverd met oplader, bits en een koffer. Gebruikers waarderen het apparaat met een hoge score (9,8). Door de relatief lage spanning is hij met name bedoeld voor kleinere klussen in huis.

DeWalt DCD777S2T

Deze DeWalt schroefboormachine werkt met een 18 V Li‑ion‑accu en heeft een compacte behuizing. Hij beschikt over twee snelheden en een 13 mm boorkop. Het gewicht in de verpakking is 3,85 kg en de boormachine wordt geleverd met twee accu’s en een oplader. Dankzij de stevige koffer kun je de machine makkelijk meenemen. Het model heeft een reviewscore van 9,0 en is daarmee geschikt voor deze selectie. De brushless motor zorgt voor een langere levensduur en meer kracht per acculading. De machine is van recente bouwjaar en wordt nog steeds verkocht.

Bosch PSB 18 LI‑2 Ergonomic

De Bosch PSB 18 LI‑2 Ergonomic is een klopboormachine voor gebruik met 18 volt. Het apparaat is uitgerust met een brushless motor en wordt geleverd met een Li‑ion‑accu en lader. Dankzij de ergonomische grip ligt het toestel comfortabel in de hand. Het maximale koppel is geschikt voor klussen in hout, metaal en lichte steen. In de verpakking zit een koffer zodat je alles netjes kunt opbergen.

Makita DDF485RFJ

De Makita DDF485RFJ is een 18 V accu‑schroefboormachine met een brushless motor. Het apparaat heeft twee versnellingen en een metalen boorkop van 13 mm. De machine wordt geleverd in een Mbox met twee 3,0 Ah accu’s en lader, zodat je langere tijd achtereen kunt werken. Dankzij de ergonomische handgreep en het gewicht van circa 5 kg inclusief verpakking ligt het toestel stabiel in de hand. De machine behaalt een goede gebruikerswaardering en is geschikt voor zwaardere schroef- en boorklussen.

Makita DF457DWE

De Makita DF457DWE is een accuboormachine die vooral bedoeld is voor huis-, tuin- en keukenklussen. Hij werkt op een 18 V Li‑ion‑accu en wordt geleverd met twee accu’s en een oplader. De machine heeft twee snelheden en een 13 mm boorkop, waardoor je zowel kunt schroeven als boren. Het toestel wordt geleverd in een koffer zodat je het gemakkelijk kunt opbergen. Ondanks dat het model al enkele jaren op de markt is, is deze Makita nog steeds verkrijgbaar bij diverse winkels.

▼ Volgende artikel
Matter uitgelegd: de nieuwe standaard voor een zorgeloos slim huis
Zekerheid & gemak

Matter uitgelegd: de nieuwe standaard voor een zorgeloos slim huis

Wil jij een slimme woning waarin alles gewoon werkt? Met de komst van Matter behoort de wirwar aan verschillende apps en protocollen definitief tot het verleden. Deze universele standaard zorgt ervoor dat al je apparaten naadloos met elkaar communiceren. We leggen uit hoe deze techniek jouw slimme huis naar een hoger niveau tilt zonder ingewikkelde installaties.

Je herkent het vast: je koopt een slimme lamp die vervolgens niet samenwerkt met je favoriete app. De nieuwe smarthome-standaard genaamd Matter maakt daar voorgoed een eind aan. In dit artikel leggen we uit wat deze techniek precies inhoudt en waarom het de manier waarop je jouw huis automatiseert fundamenteel verandert. Het draait namelijk allemaal om eenvoud en universele samenwerking tussen apparaten.

Universele taal voor al je apparaten

Matter is in de basis een communicatieprotocol dat ervoor zorgt dat apparaten van verschillende fabrikanten dezelfde taal spreken. Voorheen zat je vaak vast aan een specifiek ecosysteem zoals Apple HomeKit, Google Home of Amazon Alexa. Met de komst van Matter maakt het merk van de hardware niet langer uit voor de app die je gebruikt om alles te bedienen. Het is een softwarematige laag die boven op je bestaande wifi-netwerk of het nieuwe Thread-netwerk draait om verbindingen betrouwbaar en snel te maken. Hierdoor hoef je bij de aanschaf van een nieuwe sensor of schakelaar alleen nog maar te letten op het kenmerkende logo.

©Matter

Waarom Matter, eh, matters...

De grootste winst voor jou als gebruiker zit 'm in de eenvoud van het installatieproces en de betrouwbaarheid van het systeem. Elk product dat over de officiële ondersteuning beschikt, kun je simpelweg scannen met een QR-code, waarna het direct wordt toegevoegd aan je netwerk. Omdat grote techreuzen de handen ineen hebben geslagen, hoef je niet meer bang te zijn dat een nieuwe aankoop onbruikbaar blijkt in je huidige setup. Bovendien werkt Matter lokaal in plaats van via de cloud. Dat heeft als grote voordeel dat je privacy beter gewaarborgd is en dat je lampen ook gewoon aangaan als je internetverbinding er onverhoopt een keer uitligt.

De rol van Thread en lokale snelheid

Hoewel Matter de taal is die gesproken wordt, hebben de apparaten ook een manier nodig om die signalen fysiek te versturen. Veel moderne apparatuur maakt hiervoor gebruik van Thread, een energiezuinig protocol dat een zogenaamd mesh-netwerk vormt. Hierdoor versterken apparaten elkaar en wordt het bereik in je hele woning vergroot zonder dat je extra steunpunten hoeft te plaatsen. De combinatie van deze technieken zorgt voor een razendsnelle reactietijd. Je merkt dit direct in de praktijk omdat de vertraging tussen het indrukken van een knop in je app en de daadwerkelijke actie van het apparaat vrijwel nihil is.

©ER | ID.nl

En de toekomst...?

Hoewel de techniek nog volop in ontwikkeling is, breidt de ondersteuning zich razendsnel uit naar nieuwe productgroepen zoals robotstofzuigers, slimme sloten en zelfs huishoudelijke apparaten. Fabrikanten brengen regelmatig software-updates uit voor oudere apparatuur om deze alsnog compatibel te maken met de nieuwe standaard. Dat zorgt voor een duurzamere benadering van elektronica, omdat je niet direct al je hardware hoeft te vervangen om te profiteren van de nieuwste mogelijkheden. Het bouwen van een slim huis wordt hiermee eindelijk een overzichtelijke ervaring waarbij de techniek volledig in dienst staat van jouw gemak.

Populaire merken met Matter-compatibiliteit

Binnen de wereld van Matter zie je een aantal fabrikanten die momenteel de toon zetten met hun ondersteuning en innovatie. Philips Hue is een grote naam die via hun bridge ondersteuning biedt aan vrijwel hun gehele assortiment slimme verlichting. Nanoleaf biedt creatieve verlichtingsoplossingen die direct uit de doos samenwerken met andere systemen, terwijl TP-Link met de Tapo-serie betaalbare opties biedt voor slimme stekkers en sensoren die moeiteloos integreren in elke moderne woning.