ID.nl logo
Zo maak je je eigen bewegingssensor
© Gorodenkoff Productions OU
Huis

Zo maak je je eigen bewegingssensor

BTHome is een nieuwe open standaard voor sensors en knoppen die data via bluetooth doorsturen, ontstaan via het opensource-project Home Assistant. Elk apparaat dat het BTHome-protocol implementeert, wordt automatisch door Home Assistant herkend. Dat is handig als je zelf een bluetooth-sensor wilt maken.

In dit artikel leggen we uit hoe BTHome werkt en programmeren we in CircuitPython een sensorbordje dat detecteert wanneer het beweegt en zijn toestand via bluetooth aan Home Assistant doorstuurt.

Lijkt dit je interessant, maar weet je nog maar weinig van Home Assistant, lees dan eerst dit artikel: Maak je huis slim met Home Assistant

Code downloaden In dit artikel worden best lange voorbeelden van stukken code gegeven. Omdat overtikken van code erg foutgevoelig is, kun je die code beter downloaden en daarna bekijken of kopiëren. Zie het bestand code-bthome.txt voor de code-snippets die in dit artikel genoemd worden. De volledige code van dit project vind je op GitHub.

Heel wat goedkope sensors sturen via bluetooth low-energy data rond naar iedereen in de buurt die het maar wil oppikken. Dat heet broadcasting. Zo’n sensor doet een meting, stuurt de data rond, gaat even in slaap, wordt wakker en stuurt dan de volgende meting door.

Een domoticacontroller zoals Home Assistant kan die bluetooth-pakketjes oppikken via de bluetooth-chip in bijvoorbeeld de Raspberry Pi waarop je de software draait. Maar met alleen het datapakketje ben je nog nergens: je hebt nog een decoder nodig die het formaat van de data kent en er de nuttige sensorwaarden uit haalt. Omdat elke fabrikant zijn eigen formaat gebruikt, heb je daardoor allerlei integraties nodig in Home Assistant: voor Xiaomi, ThermoPro, Inkbird, Govee, Qingping enzovoort. 

Eén standaard voor alle sensors

De makers van Home Assistant besloten daarom om een formaat te bedenken dat allerlei soorten sensors ondersteunt: BTHome. Apparaten die bluetooth-data uitsturen volgens dit formaat, worden dan automatisch door Home Assistant herkend aan de hand van de BTHome-integratie.

Het BTHome-formaat waarmee compatibele apparaten hun data uitzenden, is uitgebreid gedocumenteerd. Dit kun je raadplegen als je in je eigen apparaten van BTHome wilt gebruikmaken. Hiervoor kun je de programmeertaal van jouw keuze voor jouw hardware gebruiken, zolang je maar BLE-advertisements kunt uitsturen.

BTHome is een open standaard voor bluetooth-sensors. Klik op de afbeeldingen voor een grotere weergave.

Bluetooth in Home Assistant inschakelen

Voor je met BTHome aan de slag gaat, dien je eerst na te gaan of je bluetooth-adapter door Home Assistant wordt herkend. Heb je een ingebouwde bluetooth-adapter, bijvoorbeeld op je Raspberry Pi, dan wordt die normaal gesproken al herkend op de pagina Instellingen / Apparaten & Diensten / Integraties. Zo niet, bijvoorbeeld als je een externe bluetooth-adapter via usb aansluit, klik dan rechts onderaan op die pagina op Integratie toevoegen en kies Bluetooth. Bevestig met Opslaan dat je de herkende adapter wilt toevoegen.

Als dit werkt, zul je in de integraties doorgaans al allerlei bluetooth-apparaten herkend zien worden. Dat is dankzij de integraties voor Xiaomi, ThermoBeacon, Qingping, ThermoPro, RuuviTag en vele andere die standaard al ingeschakeld zijn. De ondersteuning voor BTHome dien je nog expliciet in te schakelen, maar daarvoor hebben we eerst een werkend BTHome-apparaat nodig.

Zorg dat Home Assistant je bluetooth-adapter herkent.

Energiezuinig bluetooth-bordje

Voor bluetooth alleen hebben we geen ESP32-microcontrollerbordje of een Raspberry Pi Pico nodig, die immers ook een wifi-chip hebben en daardoor meer energie verbruiken. Daarom kiezen we voor een microcontrollerbordje gebaseerd op de nRF52840, een populaire bluetooth-chip van Nordic Semiconductor. Dit soort bordjes zijn energiezuinig en worden door talloze programmeeromgevingen ondersteund.

In dit artikel gebruiken we als sensorbordje een XIAO nRF52840 Sense van Seeed Studio. Het is een uiterst compact bordje (21 bij 17,5 mm) waarin een microfoon, accelerometer en gyroscoop zijn ingebouwd. Met die twee laatste kun je detecteren wanneer het bordje beweegt. Kies je een ander bordje, dan zul je de instructies in dit artikel wellicht hier en daar moeten veranderen, maar de aanpak blijft hetzelfde.

De Seeed XIAO nRF52840 Sense is een uiterst compact microcontrollerbordje met bluetooth en sensors.

CircuitPython op de Seeed XIAO nRF52840 Sense

Eerst dienen we CircuitPython op het bordje te installeren, een op Python gebaseerde programmeertaal voor microcontrollers. Download op de website van CircuitPython het firmwarebestand voor je bordje, in ons geval CircuitPython 8.0.2 voor de Seeed Studio XIAO nRF52840 (Sense). Het bordje bestaat ook in een versie zonder de sensors maar met dezelfde firmware, maar voor dit artikel hebben we de Sense-versie met sensors nodig.

Sluit daarna het bordje via usb aan op je computer en druk twee keer snel na elkaar op het minuscule resetknopje (aangeduid met RST) naast de usb-aansluiting.

Op je computer verschijnt nu een schijf met de naam XIAO-SENSE. Sleep het gedownloade bestand adafruit-circuitpython-Seeed_XIAO_nRF52840_Sense-nl-8.0.2.uf2 naar de schijf. Daarna koppelt je computer de schijf af en koppelt hij een nieuwe schijf met de naam CIRCUITPY aan. Je bordje is nu klaar om te programmeren.

©Seeed Studio

Druk twee keer snel na elkaar op het minuscule resetknopje naast de usb-aansluiting.

Mu-editor

De eenvoudigste manier om je bordje in CircuitPython te programmeren, is met de code-editor Mu, die zowel voor Windows als voor macOS en Linux beschikbaar is. Start Mu op, klik bovenaan links op Mode, kies CircuitPython uit de lijst en klik op OK. Doorgaans wordt nu je aangesloten bordje herkend. Klik bovenaan op Serial om dit te controleren. Dit opent onderaan een tekstveld van de REPL (read–eval–print-loop). Druk je daarin op Enter, dan krijg je de CircuitPython-versie te zien die je bordje draait, samen met de naam van het bordje.

In het grotere tekstveld bovenaan kun je nu je code typen die je op je bordje wilt uitvoeren. Om te testen of de hardware werkt, typ je daarin de volgende code die de ingebouwde led doet knipperen:

De code kun je overnemen vanuit dit bestand.

Klik bovenaan op Save, selecteer code.py en bevestig dat je dit bestand wilt overschrijven. Als je nu in de REPL op Ctrl+D drukt om het bordje te herstarten, draait je CircuitPython-code en knippert de led.

Met de code-editor Mu programmeer je je microcontrollerbordje in CircuitPython.

Te ingewikkeld?

Een bewegingsmelder kopen hoeft ook niet duur te zijn

Sensordata uitlezen

Door de led te laten knipperen, weten we dat je bordje werkt. Maar we willen de sensordata uitlezen. We gebruiken de IMU (Inertial Measurement Unit), die een accelerometer en gyroscoop bevat. Deze wordt ondersteund door een bibliotheek van Adafruit. Download dus de CircuitPython-bibliotheken, met name de bundel voor CircuitPython 8.x. Pak het zip-bestand uit en kopieer de mappen adafruit_bus_device, adafruit_lsm6ds en adafruit_register naar de map lib van de drive genaamd CIRCUITPY. Die map bevat nu dus drie mappen.

Schrijf nu in het bestand code.py het volgende programma:

De code kun je overnemen vanuit dit bestand.

Deze code schakelt de IMU in, wacht 50 ms tot de sensor is ingeschakeld, stelt de I2C-bus in en initialiseert dan de IMU. Daarna lezen we elke seconde de versnelling en hoeksnelheid over de drie assen in en tonen deze. Sla je dit bestand op met Ctrl+S, dan krijg je in de REPL de sensorwaardes te zien. Als je wat zwaait met het bordje, zie je onmiddellijk het effect op de metingen.

We lezen de versnelling van de accelerometer en hoeksnelheid van de gyroscoop in.

Bewegingsdetectie

Dan moeten we nu uit deze data, die continu veranderen, beweging detecteren. We willen een eenvoudig signaal: het bordje beweegt of het bordje beweegt niet. Dat kun je op allerlei geavanceerde manieren doen, met de accelerometer, gyroscoop of een combinatie van de twee. Voor de eenvoud gebruiken we hier gewoon de gyroscoopwaardes. We kwadrateren elk van de drie componenten en tellen ze op, en we beschouwen het resultaat als beweging wanneer dit groter is dan 0,01.

Onze while-lus wordt dan eenvoudig:

De code kun je overnemen vanuit dit bestand.

We verminderen het slaapinterval tot 100 ms om een snellere reactie te krijgen. Elke keer dat je nu het bordje beweegt, krijg je “Moving” te zien in de REPL. Pas indien nodig de drempelwaarde 0.01 aan.

Apparaten die BTHome ondersteunen Grote fabrikanten blijven hun eigen formaat gebruiken, maar er bestaan wel diverse opensource-projecten die ondertussen BTHome ondersteunen. Het bekendste is ATC_MiThermometer, alternatieve firmware voor sommige bluetooth-thermometers van Xiaomi. Als je deze firmware op een apparaat hebt geïnstalleerd, kun je instellen dat deze de temperatuur in BTHome-formaat uitstuurt.

Ook de b-parasite, een grondvochtigheidssensor waarvan het ontwerp van de hardware én de firmware opensource is, kan zijn data in BTHome-formaat uitsturen.

©Raphael Baron

De opensource-grondvochtigheidssensor b-parasite ondersteunt het BTHome-formaat om zijn sensordata via bluetooth uit te sturen.

Bluetooth-advertenties

Ons bordje detecteert nu beweging en toont dat in de REPL, maar nu willen we dit signaal via bluetooth uitsturen. Daarvoor dienen we eerst in de specificatie van het BTHome-formaat te duiken. In bluetooth kunnen we via een advertentie data uitsturen naar iedereen in de buurt. Zo’n advertentie bestaat uit meerdere elementen en elk element op zijn beurt uit een aantal bytes: eerst de lengte van het element (dit lengtebyte uitgezonderd), dan het type element en daarna data waarvan de betekenis van het element afhangt.

Een advertentie die door BTHome wordt begrepen, kan uit drie elementen bestaan. Eén element is verplicht: Service Data (16bit-UUID). Hierin komen de sensordata te staan. Een element Flags is sterk aangeraden. En optioneel is een element Local Name, waarmee het apparaat zijn naam adverteert.

De website van BTHome legt het formaat van de bluetooth-advertenties byte voor byte uit.

Structuur BTHome-advertentie

Laten we dus eens byte voor byte de advertentie samenstellen, met deze drie elementen. Eerst nemen we de flags op en die bytes zijn altijd hetzelfde voor BTHome: [0x02, 0x01, 0x06]. We gebruiken hier de Python-notatie voor een lijst (met rechte haken rond de elementen van de lijst) en de hexadecimale notatie van de bytes, elk voorafgegaan dor 0x. De 2 staat voor de lengte van het element (het aantal bytes erna), de 1 duidt aan dat het element van het type Flags is en 6 betekent LE General Discoverable Mode en BR/EDR Not Supported. Samengevat: dit is een apparaat met alleen bluetooth low-energy dat algemeen te vinden moet zijn.

Daarna komt een element met de eigenlijke sensordata. De lengte weten we nog niet, dus die laten we even open. Het type is 0x16, wat betekent dat het om service data met een 16bit-UUID gaat.

Daarna komen de data zelf. Die beginnen met het UUID en dat zijn altijd de bytes [0xD2, 0xFC]: het UUID van Allterco Robotics (de maker van Shelly-apparaten), dat gebruikers een licentie geeft om dit UUID te gebruiken voor BTHome.

Daarna komt een byte met apparaatinformatie. Als het om versie twee van het BTHome-formaat zonder encryptie gaat, is dit byte altijd 0x40.

Dan komen nog twee bytes: één met het type data (beweging wordt voorgesteld door 0x22) en één met de data zelf: 0 voor geen beweging, 1 voor wel beweging.

En nu kunnen we dus de bytes voor de sensordata aanmaken: [0x06, 0x16, 0xD2, 0xFC, 0x40, 0x22, 0x01]. Het eerste byte is 6, omdat het de lengte is van de bytes erna.

Tot slot voegen we nog een element met de naam van het apparaat toe, bestaande uit de lengte, 0x09 voor het type en dan de bytes van de naam.

Klasse voor BTHome-advertentie

Om dit wat overzichtelijker te maken, definiëren we een klasse in onze CircuitPython-code die deze elementen samenneemt en ze daarna eenvoudig naar de bytes omzet die we in de bluetooth-advertentie kunnen uitsturen. De code ziet er als volgt uit:

De code kun je overnemen vanuit dit bestand.

Je ziet hier dat we de elementen voor de flags en service data definiëren. In de methode __init__ (die een object van de klasse aanmaakt) zetten we de naam die je aan het object doorgeeft om naar een element voor de local name. Op het moment dat we de bewegingstoestand van de sensor willen adverteren, kunnen we dan eenvoudigweg de methode adv_data van het object roepen met als argument 1 voor beweging en 0 voor geen beweging. Die methode plakt al die reeksen bytes op de juiste manier aan elkaar en vervangt het laatste byte van de service data door de bewegingstoestand.

Beweging adverteren

Dan komt nu de laatste stap, de bewegingsdetectie via bluetooth adverteren. Daarvoor importeren we in het begin van de code eerst de adapter van de module _bleio):

from _bleio import adapter

We maken dan op het einde van onze code een object van de klasse BTHomeAdvertisement met de naam van ons apparaat, en de while-lus breiden we uit om de bewegingstoestand telkens te adverteren:

De code kun je overnemen vanuit dit bestand.

Bij beweging vragen we aan het object bthome de advertentiedata voor beweging op en anders de advertentiedata voor geen beweging. We tonen de data in de REPL en adverteren ze via de bluetooth-adapter. Na 100 ms stoppen we met adverteren en doen we weer een meting. Daarna adverteren we weer met de nieuwe data en zo blijft dat aan de gang. Zoals eerder gezegd vind je op GitHub de volledige code.

Integratie in Home Assistant

Dan nu de test: detecteert Home Assistant onze sensor? Ga in het dashboard van Home Assistant naar Instellingen / Apparaten en Diensten / Integraties. Klik rechts onderaan op Integratie toevoegen en kies BTHome. Als je bordje aan het adverteren is, wordt het hier al onmiddellijk herkend. Klik op Opslaan, ken het eventueel aan een ruimte toe en klik dan op Voltooien. Daarna kun je het apparaat bekijken en de bewegingssensor erin toevoegen aan je dashboard of automatisaties.

Onze BTHome-bewegingssensor wordt automatisch herkend in Home Assistant.

Flexibel formaat

We hebben in dit artikel een eenvoudig voorbeeld gemaakt van een sensor die één type data uitstuurt: 1 of 0 voor wel of geen beweging. Maar het BTHome-formaat ondersteunt tientallen datatypes, waaronder temperatuur, luchtvochtigheid, batterijpercentage, stroom en snelheid.

BTHome is ook een flexibel formaat: je kunt de data van meerdere sensors tegelijk in één advertentie uitsturen. Stel dat we op onze XIAO nRF52840 Sense na de beweging ook de temperatuur willen uitsturen, dan voegen we aan de service data gewoon 0x02 voor de temperatuur toe en dan twee bytes die de temperatuur in honderdsten van een graad Celsius voorstellen. En we kunnen er ook nog 0x01 voor het batterijpercentage aan toevoegen en dan een byte met een waarde van 0 tot 100. De BTHome-integratie van Home Assistant pikt al die types en bijbehorende data op. Als je dus ooit een eigen bluetooth-sensor wilt maken, probeer dan BTHome eens uit.

13 Een greep uit de types sensors die BTHome ondersteunt.

 

Sensordata versleutelen Het BTHome-formaat dat we in dit artikel hebben gebruikt, stuurt alle sensordata onversleuteld uit. Iedereen in de buurt met een bluetooth-ontvanger kan deze data dus meelezen. Heb je dat liever niet, dan moet je gebruikmaken van de versleuteling in BTHome. De service data bevatten dan na de formaataanduiding 0x41 (BTHome v2 met versleuteling) versleutelde data, een teller en een Message Integrity Check (MIC). Alleen wie de sleutel heeft waarmee de data zijn versleuteld, kan de oorspronkelijke sensordata uit deze geadverteerde data reconstrueren. De BTHome-integratie in Home Assistant vraagt je om de sleutel in te voeren als je een BTHome-apparaat met encryptie wilt toevoegen.

BTHome ondersteunt ook versleuteling om pottenkijkers tegen te houden.

▼ Volgende artikel
Bedien je slimme apparaten met een zelfgebouwd touchscreen
© InfiniteFlow - stock.adobe.com
Huis

Bedien je slimme apparaten met een zelfgebouwd touchscreen

Houd je van knutselen én automatiseer je alles in en om je huis met Home Assistant? Kijk dan zeker eens naar ESPHome. Je kunt eindeloos variëren met componenten. Dankzij de koppeling met Home Assistant bouw je gemakkelijk en voor weinig geld een lichtschakelaar of sensor, om maar wat te noemen. De LVGL-bibliotheek zorgt ervoor dat je nu ook eenvoudig met een touchscreen en zelfbedachte gebruikersinterface kunt werken. We laten zien hoe dat werkt met tips voor passende projecten.

In dit artikel laten we zien hoe je een touchscreen-interface bouwt voor Home Assistant met ESPHome en LVGL:

  • Installeer ESPHome en configureer een ESP32-microcontroller voor je project
  • Sluit een touchscreen aan en stel de juiste GPIO-pinnen en drivers in
  • Gebruik LVGL-widgets voor een interactieve interface
  • Integreer je touchscreen met Home Assistant voor directe bediening van je slimme apparaten

Lees ook: 5 fouten die je niet moet maken in je smarthome

Code downloaden

In dit artikel staat een voorbeeld van wat YAML-code. Omdat YAML erg gevoelig is voor foute spaties, kun je die code beter downloaden en daarna bekijken of kopiëren. In het bestand espcode.txt staan alle regels voorbeeldcode zoals ze in dit artikel aan bod komen. Maar je vindt ook een uitgewerkt voorbeeld in het bestand cyd-demo.yaml. Beide bestanden zijn hier te downloaden.

Uitgewerkt voorbeeld

Het meest uitgewerkte voorbeeld voor de demo met LVGL vind je op deze GitHub-pagina van auteur Gertjan Groen. In de code die je kunt downloaden (ook in het losse bestand cyd-demo.yaml) hebben we ook de RGB-led op de achterzijde toegevoegd, die je bijvoorbeeld als statusmelding kunt gebruiken. Verder is een timer toegevoegd om de backlight te regelen, zodat deze bij inactiviteit wordt uitgeschakeld. Tot slot laten we zien hoe je de GPIO-pinnen kunt gebruiken via de I2C-bus. Op de GitHub-pagina vind je nog meer handige informatie.

ESPHome maakt het heel makkelijk om apparaten te maken voor een slim huis, zoals je eigen sensors. Zo bouwden we eerder al eens een luchtkwaliteitsmonitor, een infraroodzender/ontvanger en een controller met drukknoppen en leds, waarmee je apparaten kunt bedienen en de status aflezen. Hoe je dat doet, lees je in dit artikel: Zo maak je met ESPHome apparaten geschikt voor je smarthome.

De basis voor ESPHome is een kleine, voordelige en zuinige microcontroller, meestal de ESP32. ESPHome ondersteunt enorm veel componenten en biedt daardoor haast onbegrensde mogelijkheden. We helpen je kort op weg met ESPHome, maar gaan ook meteen een stapje verder met de toevoeging van een touchscreen en de LVGL-bibliotheek. Daar kun je sinds augustus 2024 officieel gebruik van maken binnen ESPHome.

Met LVGL kun je aan de hand van widgets een grafische gebruikersinterface opbouwen en weergeven (zie kader ‘Grafische interfaces met widgets’). Soms kom je de term HMI (Human Machine Interface) tegen, waarmee een grafische gebruikersinterface voor het bedienen van apparatuur wordt bedoeld.

De kracht van ESPHome is dat je niet alleen lokaal aangesloten apparaten bedienbaar kunt maken, bijvoorbeeld via een relais, maar ook alle apparaten die je binnen Home Assistant gebruikt.

Grafische interfaces met widgets

LVGL staat voor Light and Versatile Graphics Library. Het is een opensource-bibliotheek die sinds 2016 bestaat. Je kunt ermee werken binnen ESPHome, Arduino, Tasmota en openHASP. Het laatste project is zelfs specifiek bedoeld voor microcontrollerfirmware met LVG.

De bibliotheek is heel licht, waardoor het soepel en snel kan werken op apparaten met beperkte capaciteit, bijvoorbeeld met een microcontroller. Bovendien kan LVGL flexibel met verschillende lay-outs, schermformaten en invoermethodes werken. Naast touchscreens kun je ook bijvoorbeeld muis, toetsenbord, losse knoppen en draaiknoppen toevoegen.

Via meer dan dertig widgets kun je een grafische gebruikersinterface opbouwen. Het uiterlijk is via thema’s en stijlen eenvoudig aan te passen. Bovendien kun je met animaties werken.

LVGL wordt gebruikt in slimme apparaten zoals thermostaten, smartwatches en keukenapparatuur, en zelfs in touchscreens voor industriële omgevingen. Op de website vind je enkele interactieve demo’s voor bekende toepassingen, waarbij de gebruikersinterface in de browser wordt getoond.

Met LVGL kun je via widgets een gebruikersinterface bouwen.

1 Wat gaan we doen?

Met ESPHome kun je relatief eenvoudig apparaatjes voor je slimme huis maken. Een voordeel ten opzichte van bijvoorbeeld Arduino en MicroPython is dat je niet hoeft te programmeren. Je hoeft alleen een configuratiebestand te maken waarin je de gebruikte microcontroller, verbindingsgegevens voor je wifi-netwerk en alle aangesloten componenten aanduidt. Hierna wordt firmware gemaakt en weggeschreven op je microcontroller. Alleen die eerste keer is dit soms wat lastig. Heb je het eenmaal werkend? Alle keren erna kun je heel eenvoudig de configuratie aanpassen en over-the-air (OTA) naar de microcontroller sturen.

In dit artikel gaan we met LVGL werken. Hiermee kun je binnen ESPHome grafische interfaces maken via widgets. Voor veel projecten zul je daarom niet eens componenten hoeven aan te sluiten, maar heb je genoeg aan een touchscreen. Denk bijvoorbeeld aan een lichtknop en helderheidsregeling voor een slimme lamp in Home Assistant, zoals we in dit artikel demonstreren. Je kunt natuurlijk ook geavanceerdere gebruikersinterfaces maken voor vrijwel elk apparaat in Home Assistant.

©pozitivo - stock.adobe.com

Je kunt bijvoorbeeld zelf een gebruikersinterface voor je slimme lampen bouwen, zodat je ze eenvoudig kunt bedienen.

2 Wat heb je nodig?

Wat hardware betreft, is het vrij eenvoudig. De ESP32-chip heeft snel de voorkeur boven de verouderde ESP8266-versie, zeker als je met een touchscreen gaat werken. De Raspberry Pi Pico W (zie gelijknamig kader) is ook een optie, maar die wordt nog niet volledig ondersteund binnen ESPHome.

Makkelijk om mee te starten is een eenvoudig ontwikkelbordje rondom de ESP32 dat je voor ongeveer 5 euro kunt aanschaffen. Het is wel fijn als je hier goede documentatie bij hebt, zodat je op zijn minst weet waar alle aansluitingen zitten.

Er zijn diverse varianten van de ESP32-module. Bekende opties zijn de ESP-WROOM-32E, ESP32-C3 en ESP32-S3. De ESP32-C3 wordt vaak in extra compacte bordjes gebruikt, die je onder de naam ‘super mini’ tegenkomt – handig als je niet veel aansluitingen nodig hebt of niet veel ruimte hebt.

De ESP32-S3 is een fijne optie vanwege de beschikbaarheid van PSRAM (Pseudo Static RAM), een voordelig type werkgeheugen dat onder meer nuttig is bij grafische toepassingen. Staat een touchscreen centraal in jouw project en wil je snel van start, overweeg dan een model met ingebouwde ESP32-chip (zie volgende paragraaf).

De ESP32-module is in verschillende uitvoeringen verkrijgbaar.

Raspberry Pi Pico W

De Raspberry Pi Pico is een voordelige en flexibele serie ontwikkelbordjes rondom de RP2040-microcontroller. De eerste versie verscheen in januari 2021. De Pico W is vanwege de wifi-connectiviteit een interessante optie voor ESPHome. Recent werd de Pico 2 W aangekondigd die op meerdere fronten is verbeterd. Dat model is op het moment van schrijven echter nog niet geschikt voor ESPHome.

De Raspberry Pi Pico W is ook bruikbaar in Home Assistant.

3 Touchscreen

Als je een touchscreen gaat gebruiken in je ESPHome-project, dan kun je eventueel een los exemplaar op de microcontroller aansluiten en configureren. Maar je kunt ook een touchscreen met ingebouwde ESP32 kiezen. Dat is vaak veel handiger en goedkoper. Je hoeft niet te solderen en kunt direct een gebruikersinterface bouwen in YAML-code. Het scheelt ook wat tijd. Bovendien zijn er zelfs modellen compleet met behuizing.

Kies een scherm dat door ESPHome wordt ondersteund. De website van ESPHome geeft goede suggesties. Je kunt ook afgaan op ervaringen van anderen. Het kan dan een iets grotere uitdaging zijn om de juiste configuratie voor je display in ESPHome te vinden. Je zult daarbij waarschijnlijk wel even moeten experimenteren, niet alleen bij het instellen van je display, maar ook bijvoorbeeld voor het touchgedeelte. Zelfs bij het vrij gangbare touchscreen dat we in dit artikel gebruiken, was dat een beetje prutsen.

Kies een touchscreen dat door ESPHome wordt ondersteund.

4 Scherm met ESP32

Voor dit artikel hebben we een eenvoudige ESP32-2432S028 gebruikt, met een resistief touchscreen van 2,8 inch met 240 × 320 pixels. Dit model wordt ook wel de ‘Cheap Yellow Display’ genoemd, wat vooral met de gele printplaat te maken heeft.

Er zijn meerdere varianten. Zo wordt in de schermpjes vaak de ILI9341-chip als aansturing gebruikt, maar soms ook de ILI9342, zoals in ons exemplaar. Dat vergt dan een heel kleine, maar noodzakelijke aanpassing in je configuratie.

Je kunt het scherm flexibel inzetten voor je IoT-projecten. Zoek je een wat groter touchscreen, dan kun je bijvoorbeeld de CrowPanel van Elecrow overwegen. Die is er in een versie van 5 inch (ca. 32 euro) en 7 inch (ca. 42 euro), inclusief acrylbehuizing en verzending via de fabrikant. Beide versies hebben een touchscreen met hoge resolutie van 800 × 480 pixels en zijn voorzien van de modernere ESP32-S3-chip. Het touchscreen is capacitief, wat zeker voor kleinere bedieningselementen fijner werkt dan het resistieve touchscreen in ons goedkope alternatief.

Tegenwoordig bestaan er ook ronde touchscreens. Een leuke optie (zij het met beperkte schermruimte) is de ESP32-2424S012 met een ESP32-C3-microcontroller, een rond kleuren-touchscreen van 1,28 inch en in een witte of zwarte behuizing. Makerfabs heeft een vergelijk schermpje zonder behuizing. De LilyGo T-RGB heeft een wat groter 2,1inch-scherm (zonder behuizing), maar is ruim twee keer zo duur.

De ESP32-2432S028 is een voordelig scherm (onder), een wat duurder alternatief is het capacitieve 5inch-aanraakscherm met ESP32 van Elecrow (boven).

5 Add-ons voor ESPHome

Hoewel je bijvoorbeeld een pc met Python kunt gebruiken voor het bewerken van je configuratiebestanden en het flashen van de microcontroller met de software voor ESPHome, is het meestal veel makkelijker om de add-on voor ESPHome binnen Home Assistant te gebruiken. Dat geeft ook een ander groot voordeel: je kunt de configuratie voor alle apparaten met ESPHome binnen Home Assistant beheren. Je zult zeker in de testfase veel wijzigingen aan de configuratie moeten maken.

Via de add-on voor ESPHome voeg je eenvoudig microcontrollers toe.

6 Microcontroller toevoegen

We gaan nu een verse microcontroller toevoegen. Je kunt eventueel ESPHome Web gebruiken om de microcontroller voor te bereiden voor gebruik met ESPHome, maar wij geven zoals gezegd de voorkeur aan de ESPHome-add-on, die je binnen Home Assistant kunt openen.

Je kunt voor deze methode de microcontroller gewoon via usb aansluiten op je eigen pc, maar dit vereist wel dat je Home Assistant opent via een beveiligde https-verbinding. Lukt dat niet? Als alternatief kun je de microcontroller ook via usb aansluiten op het systeem met Home Assistant zelf, voordat je verder gaat in ESPHome.

Het dashboard van ESPHome toont alle toegevoegde apparaten.

Ook leuk: Werk met wat je hebt: creëer je eigen alarmsysteem met Home Assistant

7 Configuratie

Klik binnen ESPHome op New device om een nieuwe microcontroller te initialiseren. Vul bij Name een naam in voor het apparaat. Bij Network name vul je de naam (SSID) in van het wifi-netwerk waarmee de microcontroller moet verbinden en bij Password het bijbehorende wachtwoord. Klik dan op Next.

In de volgende stap zal ESPHome een configuratiebestand maken, firmware bouwen en de microcontroller flashen. Klik daarvoor dus eerst op Connect. Als het goed is, kun je nu de com-poort selecteren waarmee de microcontroller is verbonden. Zie je geen com-poort, dan zul je eerst drivers moeten installeren. De instructies krijg je als je het venster sluit zonder een com-poort te selecteren. Als de verbinding is gelukt, zal de installatie verdergaan. Lukt het niet? Dan kun je kiezen voor Skip this step gevolgd door een handmatige configuratie.

Vul een naam in en de details voor het wifi-netwerk.

Toepassingen voor een touchscreen

Er zijn veel leuke toepassingen voor een touchscreen. Zo kun je bijvoorbeeld een soort weerstation maken, dat je voorziet van actuele informatie van Home Assistant. Ook kun je live de opbrengst van je zonnepanelen laten zien of het verbruik in huis. Je zou een schermpje voor Music Assistant kunnen maken met bijvoorbeeld de weergave van het nummer en volumeregeling (zie ook: Met Music Assistant ben jij de baas over jouw muziekcollectie). Tot slot kun je een scherm gebruiken voor statusmeldingen of loggegevens.

8 Touchscreen met ESP32

We gebruiken in dit artikel zoals gezegd de ESP32-2432S028 als voorbeeld. Dit is een touchscreen met ingebouwde ESP32-chip. Dit apparaatje kun je direct toevoegen aan ESPHome: precies zoals in paragraaf 7 staat omschreven, al moesten we in dit geval na het aanwijzen van de com-poort wel de boot-knop even indrukken.

Overigens bevat het apparaat meestal een voorgeprogrammeerde demo met een gebruikersinterface op basis van LVGL. Die zie je als je hem zo uit de doos op een voeding aansluit. Je kunt daarmee meteen de werking controleren. Je zult bij een model met resistief aanraakscherm overigens iets harder moeten drukken dan je misschien gewend bent.

We gebruiken dit voordelige 2,8inch-aanraakscherm, dat ook wel ‘Cheap Yellow Display’ wordt genoemd.

9 Schermconfiguratie

Na het toevoegen van je touchscreen heb je direct een basisconfiguratie voor ESPHome. Via Edit kun je deze configuratie aanpassen. Zowel voor het aansturen van het display als de registratie van het aanraken wordt SPI (Serial Peripheral Interface) gebruikt. Voor onze ESP32-2432S028 is dit de configuratie, rekening houdend met de gebruikte interne GPIO-pinnen:

We voegen nu eerst de configuratie van het display toe en in paragraaf 11 het touchgedeelte. Voor het display is de configuratie als volgt:

Merk op dat er ook een (oudere) variant van dit touchscreen is met de ILI9341. In dat geval gebruik je model: ILI9341 en invert_colors: false. Na het maken van de aanpassingen kies je Install. Je kunt nu kiezen hoe je de firmware wilt overbrengen. Meestal kies je Wirelessly voor over-the-air-updates. Het apparaat hoeft daarbij niet meer met jouw pc te zijn verbonden.

Binnen ESPHome kun je eenvoudig de configuratie bewerken.

10 LVGL-bibliotheek

Binnen ESPHome kon je voorheen met displays werken door binnen de component display met lambda bijvoorbeeld teksten met een bepaald lettertype naar je scherm te sturen. Als je LVGL gaat gebruiken, gebruik je geen lambda meer, maar alleen LVGL en widgets. Als eerste voegen we de LVGL-bibliotheek toe aan de YAML-code:

lvgl:
  buffer_size: 25%

De optie buffer_size is ons geval noodzakelijk, vanwege de afwezigheid van PSRAM. In paragraaf 13 voegen we ook nog widgets toe. Omdat we dat hier nog niet hebben gedaan, zie je na het flashen als het goed is een demo met een knop, checkbox, cirkel met tekst en schuifbalk.

11 Configuratie touchscreen

Bediening via het scherm is nog niet mogelijk. Daarvoor moeten we het touchscreen toevoegen aan de configuratie van ESPHome:

Bewaar de aanpassingen en installeer de nieuwe firmware. Controleer of je de demo goed kunt bedienen. De regels onder on_touch zorgen dat in de logs de geregistreerde coördinaten worden getoond. Er kunnen aanpassingen nodig zijn in de regels onder calibration en transform.

12 Backlight

Het display is voorzien van een achtergrondverlichting (backlight) via pin 21. We definiëren deze output als volgt:

Daarna configureren we de achtergrondverlichting, waarbij we verwijzen naar de hierboven gedefinieerde output.

Na het flashen zal de backlight standaard aanstaan. Eventueel kun je deze vanuit Home Assistant aan- en uitzetten en de helderheid ervan regelen, bijvoorbeeld op basis van afwezigheid. Je kunt ook een script maken om de helderheid bij inactiviteit terug te brengen. Daarvoor verwijzen we je naar het uitgewerkte voorbeeld op GitHub (zie kader ‘Code downloaden’).

Binnen Home Assistant kun je eventueel ook de backlight aan- en uitzetten.

13 Widgets toevoegen

Onder de regel lvgl kun je nu de gewenste LVGL-componenten toevoegen aan je YAML-configuratie. Denk aan bijvoorbeeld knoppen, schuifregelaars, grafieken of labels. In dit voorbeeld voegen we aan de bovenkant alleen twee widgets toe voor een dimbare led, te weten een schakelaar (button) en schuifregelaar (slider).

De meeste opties dienen voor het positioneren van de widget. We geven bijvoorbeeld de breedte (width) en hoogte (height) aan, halen de widgets iets van de rand of met x en y, en regelen de uitlijning met align. Het gedeelte bij on_click zorgt dat de bewuste lamp in Home Assistant wordt omgeschakeld bij het klikken op de button. Voor de slider doen we hetzelfde onder on_release. Die acties zijn overigens om veiligheidsredenen niet direct mogelijk. In paragraaf 16 leggen we uit hoe je dit kunt toestaan.

We voegen in dit voorbeeld alleen twee eenvoudige widgets toe.

Cookbook voor ESPHome en LVGL

We houden het hier redelijk eenvoudig, maar je kunt natuurlijk veel geavanceerdere gebruikersinterfaces maken. Zo is bijvoorbeeld een geneste structuur mogelijk, kun je op verschillende manieren een grid maken, en met pagina’s individuele schermen of secties in je gebruikersinterface maken. Daarbij kan elke pagina zijn eigen widgets hebben. ESPHome geeft op zijn website in een ‘cookbook’ nog wat praktische voorbeelden voor het werken met LVGL, ook in combinatie met Home Assistant.

De website van ESPHome heeft veel voorbeelden voor het werken met LVGL.

14 Interactie met Home Assistant

De entiteit voor de dimbare lamp heeft in Home Assistant de naam light.wledkantoor. De waardes zijn nodig om de widgets de juiste status te kunnen geven. Daarom voegen we hieronder een binary_sensor toe voor de status (aan of uit) en een sensor voor het helderheidsniveau. We werken vervolgens bij on_state en on_value de widgets bij als de status verandert in Home Assistant. Bij id vul je uiteraard de id van de betreffende widget in.

Gebruik de logfunctie om te zien of bijvoorbeeld een status verandert.

15 Toevoegen aan Home Assistant

De add-on voor ESPHome hebben we gebruikt om de microcontroller van firmware te voorzien. Maar je zult het apparaat hierna nog wel moeten toevoegen aan Home Assistant. Dat is heel eenvoudig: het wordt automatisch gevonden. In Home Assistant zie je via Instellingen / Apparaten en diensten het bewuste apparaat direct terug op het tabblad Integraties. Klik op de knop Toevoegen om het aan Home Assistant toe te voegen.

Het apparaat met ESPHome moet je nog toevoegen aan Home Assistant.

16 Acties toestaan

Als je het touchscreen bedient, zal Home Assistant een melding geven dat het ESPHome-apparaat heeft geprobeerd een actie in Home Assistant uit te voeren. Standaard is dit om veiligheidsredenen niet toegestaan, maar dit is eenvoudig op te lossen.

Ga naar Instellingen / Apparaten en klik dan onder het kopje Geconfigureerd op ESPhome. Achter het bewuste apparaat klik je vervolgens op Configureren. Zet een vinkje bij Toestaan dat het apparaat Home Assistant-acties uitvoert. Klik op Verzenden. Hierna zijn alle acties zoals het omschakelen van de lamp en regelen van de helderheid wel toegestaan.

Zorg dat het apparaat acties in Home Assistant mag uitvoeren.

▼ Volgende artikel
Slimme stekkers: welke modellen zijn echt zuinig?
© Proxima Studio - stock.adobe.com
Huis

Slimme stekkers: welke modellen zijn echt zuinig?

Met slimme stekkers verander je je huis eenvoudig in een smart home: steek ze in een gewoon stopcontact, sluit er lampen of je televisietoestel op aan en regel via een app of met je stem bijvoorbeeld dat ze automatisch worden uitgeschakeld. Zo voorkom je onnodig stroomverbruik doordat apparaten niet meer op stand-by blijven staan. Maar slimme stekkers gebruiken zélf ook stroom. Welke zijn zuinig genoeg om écht geld te besparen?

Energie besparen en slimme apparaten gaan uitstekend samen. In dit artikel lees je hoe je geld bespaart door gebruik te maken van de zuinigste slimme stekkers. • Slimme stekkers en stroomverbruik • De zuinigste slimme stekkers op een rij • Waar je op moet letten bij het kopen van slimme stekkers

Ook lezen: Stroomvreters: deze apparaten in huis verbruiken meer energie dan je denkt


Slimme stekker of slim stopcontact?

De termen slimme stekker en slim stopcontact worden door elkaar gebruikt. Dat is een beetje verwarrend, maar wel begrijpelijk: het is een apparaat met aan de ene kant een stekker (voor je 'domme' stopcontact) en aan de andere kant een slim stopcontact. In dit artikel hanteren we de benaming slimme stekker.


Zo bespaart een slimme stekker stroom

Een slimme stekker helpt je stroom besparen door apparaten automatisch uit te schakelen, bijvoorbeeld 's nachts. Zo verbruikt je televisie geen stroom meer in de stand-bymodus. Je kunt instellen dat alle apparatuur op vaste tijden uitschakelt, bijvoorbeeld zodra je gaat slapen. Je kunt ook met één druk op de knop alle lampen en andere apparaten uitschakelen, zodat je niets vergeet. Slimme stekkers uit een hogere prijsklasse bieden bovendien inzicht in je stroomverbruik. Daardoor kun je gerichter energie besparen.

©Proxima Studio - stock.adobe.com

Verbruik van een slimme stekker

Tegenover de besparing staat het eigen stroomverbruik van slimme stekkers. Dat begint bij zo'n 0,3 watt en loopt op tot 2 watt. Niet veel, maar ze staan wel 24 uur per dag en 365 dagen per jaar aan. De zuinigste modellen verbruiken daardoor op jaarbasis 2,6 kWh (0,3 watt × 24 uur × 365 dagen ÷ 1000). Bij een stroomprijs van 0,30 euro per kWh komt dat neer op 0,79 euro per jaar. Een slimme stekker die 2 watt verbruikt kost op jaarbasis 5,26 euro. In een slim huis gebruik je al snel 10 slimme stekkers, waardoor je op jaarbasis aardig wat geld kunt besparen door de zuinigste modellen uit te kiezen.

Kies niet alleen op prijs, maar ook op verbruik Vergelijk je het jaarlijkse stroomverbruik met de aanschafprijs van een slimme stekker (meestal tussen de 5 en 35 euro), dan blijkt al snel dat vooral het stroomverbruik bepalend is voor de totale kosten op de lange termijn. Toch vermelden veel verkopers niets over het energieverbruik.

Denk aan de compatibiliteit

Alleen letten op het stroomverbruik van een slimme stekker is niet genoeg. Het is minstens zo belangrijk dat de stekker goed samenwerkt met jouw slimme netwerk. De meeste modellen werken met Google Home en Amazon Alexa, terwijl Apple HomeKit selectiever is. Check daarom altijd de productbeschrijving om zeker te weten dat de slimme stekker bij jou thuis werkt.

Slimme stekkers die samenwerken met

Google Assistant en met Alexa

Stroomverbruik en verbindingstype

Waar komt het grote verschil in stroomverbruik tussen slimme stekkers vandaan? Dat heeft alles te maken met de verbinding met je thuisnetwerk. De meeste stekkers gebruiken wifi om bereikbaar te blijven, zodat jij ze op afstand kunt bedienen. Maar wifi verbruikt relatief veel energie – het signaal is eigenlijk krachtiger dan nodig is voor dit soort toepassingen.

Een zuiniger alternatief is een hub die het wifisignaal omzet naar een lichter protocol, zoals Zigbee of Z-Wave. Die vormen een soort schakel tussen je netwerk en de slimme stekkers. Het grote voordeel: dit soort verbindingen verbruiken vaak minder dan 0,5 watt.

©Proxima Studio - stock.adobe.com

Zigbee en Z-Wave

De zuinige protocollen die gebruikt worden zijn Zigbee en Z-Wave en die werken allebei prima. Maar ze zijn niet verenigbaar met elkaar. Je zult dus één systeem moeten kiezen. Daarnaast heb je een centrale hub nodig om alles aan elkaar te koppelen. Dat is een kleine investering die zich, door de lagere stroomkosten, snel terugverdient.

Slimme stekkerVerbruik (watt)Protocol
TP-Link Tapo P1151 – 1,5Wifi
TP-Link Tapo P1000,5 – 1Wifi
Shelly Plug S0,9 – 1,5Wifi
Iqore Smart Plug1 – 2Wifi
Aqara Smart Plug0,3 – 0,5Zigbee
Philips Hue Smart Plug0,3 – 0,5Zigbee
IKEA TRETAKTSmart Plug0,3 – 0,5Zigbee
Samsung SmartThings Outlet0,5 – 1,5 WZigbee
Fibaro Wall Plug V20,5 – 1Z-Wave
Qubino Smart Plug0,5 – 1Z-Wave

Verbruik van hubs voor Zigbee en Z-Wave

Voor een compleet beeld moeten we ook kijken naar het stroomverbruik van een Zigbee- of Z-Wave-hub. Zigbee-hubs verbruiken doorgaans tussen de 0,5 en 3 watt. Sluit je meerdere slimme stekkers of andere apparaten aan, dan verdien je dat al snel terug ten opzichte van wifi. Z-Wave-hubs verbruiken wat meer, meestal tussen de 2 en 10 watt.

Ook qua veelzijdigheid zijn er verschillen. De Philips Hue Bridge (Zigbee) is bijvoorbeeld erg zuinig, met een verbruik tussen de 0,5 en 1 watt. Maar deze werkt uitsluitend met Philips Hue-apparaten.

Een slimme start is het halve werk

Zoals je ziet, zijn er heel wat factoren om rekening mee te houden. Breng daarom vooraf in kaart wat je nu nodig hebt én wat je in de toekomst verwacht te gebruiken. Zo voorkom je onnodige kosten en bespaar je op de lange termijn, vooral als je ook let op het energieverbruik per apparaat.


Nog meer energie besparen? ⤵️

Vraag een offerte aan voor verduurzaming: