ID.nl logo
Wat zijn fotonische chips?
© Reshift Digital
Huis

Wat zijn fotonische chips?

Decennialang werden computers sneller, omdat de componenten op de chips steeds kleiner werden. Maar nu de grenzen van het mogelijke in zicht komen, wenden chipontwerpers zich tot de fotonica. Deze technologie belooft niet alleen enorme energiebesparing, maar mogelijk ook werkelijk bruikbare kwantumcomputers. Wat zijn fotonische chips precies?

“Er bestaat geen reden waarom iedereen thuis een computer zou willen hebben.” Ken Olsen, medeoprichter van het computerbedrijf Digital Equipment Corporation, sprak deze woorden in 1977. En hij had gelijk, want destijds hadden de meeste mensen niets aan zo’n ding. Pas na zo’n vijftien jaar werden pc’s gemeengoed in huishoudens en wat later kwamen de mobiele telefoon en zijn opvolger de smartphone op. Op een enkele hoogbejaarde na heeft iedereen inmiddels altijd zo’n zakcomputer bij de hand. Vergeleken met de computers uit de jaren 70 zijn dat formidabele apparaten. Wanneer je toen voorspeld zou hebben dat iedereen met een snoerloos plankje zou kunnen filmen, navigeren, beeldbellen en betalen en dat we er in permanent contact met bekenden mee zouden staan, dan zou dat louter meewarige blikken hebben uitgelokt.

Kwantummechanische wetten

Een minicomputer die alles kan en waar je zelfs mondelinge vragen aan kunt stellen, moet wel een enorm geoptimaliseerd apparaat zijn. Dat is inderdaad het geval. Smartphones zouden niet mogelijk zijn zonder uiterst compacte componenten, waaronder vooral de microprocessor. De allereerste processor, de Intel 4004 uit 1971, telde 2300 transistors. Tegenwoordig is 15 miljard geen uitzondering. De kloksnelheid bedroeg 740 kilohertz, oftewel zo’n 4000 keer trager dan wat tegenwoordig de norm is. En met 10 micrometer waren de transistors op deze oerchip ook nog eens zo’n 1000 tot 2000 keer groter dan de 10- of 5-nanometer-componenten op de huidige chips.

Hoe fantastisch ook, dit feest kan volgens veel deskundigen niet eeuwig doorgaan. Chips zijn gemaakt van silicium. Een siliciumatoom heeft een doorsnee van ruwweg 0,2 nanometer. De grenzen van de miniaturisering zijn dus in zicht. Daar komt bij dat elektronen, die de dragers van informatie zijn in deze transistors, op deze schaal grillig gedrag vertonen. De kwantummechanische wetten die het gedrag van elementaire deeltjes beschrijven, staan toe dat elektronen zich plotseling op een andere plek bevinden of zelfs op twee plekken tegelijk. Uiteraard is dit niet best voor de stabiliteit van een chip.

©PXimport

System on a chip

Volgens pessimisten komt hiermee een einde aan de Wet van Moore, de vuistregel dat het aantal transistors op een chip pakweg elke twee jaar verdubbelt. Nieuwe processors, zo vrezen ze, zullen niet meer de spectaculaire prestatiesprongen laten zien waaraan we gewend en verslaafd zijn geraakt. Nu zijn ontwerpers van chips gelukkig niet voor één gat te vangen. Het succes van de smartphone is gebaseerd op de uitvinding van de ‘system on a chip’, oftewel SoC. Door de processor, de grafische processor, het werkgeheugen en andere vitale onderdelen op één chip samen te brengen, kan flink wat ruimte en energie worden bespaard. Een laag energieverbruik is essentieel in mobiele apparaten: de accu raakt minder snel leeg en er hoeft minder warmte te worden afgevoerd. Traditionele laptopprocessors, zoals die van Intel, worden bij intensieve taken zo heet dat de chip zelfs bij een loeiende ventilator zijn kloksnelheid moet terugschakelen. SoC’s, zoals de M1-chip in de nieuwste laptops van Apple, blijven dermate koel dat een ventilator meer luxe dan noodzaak is. De nieuwste MacBook Air bevat er dan ook geen.

De regel dat het aantal transistors elke twee jaar verdubbelt, gaat niet zo lang meer mee

-

Geen vreemde eend

Maar hoe slim ook ontworpen, ook SoC’s lopen tegen de grenzen van de miniaturisering aan. Daarom beginnen chipontwerpers aan het fundamentele karakter van de traditionele siliciumchip te morrelen. Zoals we al zagen, is een chip een apparaat waarin groepjes elektronen heen en weer geschoven worden. Dat zijn elementaire deeltjes met een massa en een elektrische lading. Ze zijn daardoor gemakkelijk te manipuleren. Maar wanneer ze bewegen, warmen ze hun omgeving op. Er bestaat ook een deeltje dat dit nadeel niet heeft: het foton. Dit deeltje, feitelijk het kwantum van het elektromagnetische veld, is bepaald geen vreemde bijt in de ICT-industrie. Het wordt al jaren gebruikt om data te verzenden door glasvezelkabels en ook LiDAR berust op het uitzenden en opvangen van fotonen. Maar zodra deze deeltjes in een computer aankomen, geven ze het estafettestokje door aan elektronen, zodat er bewerkingen op kunnen worden uitgevoerd. Het onderzoeksveld dat zich met deze wisselwerking tussen fotonen en elektronen bezig houdt, wordt fotonica genoemd.

©PXimport

Grofstoffelijk

Fotonen kunnen dus worden gebruikt om data te verzenden en de omgeving te scannen, maar vooralsnog niet om te rekenen. Dat is teleurstellend, want fotonische schakelingen zijn in theorie ontzettend snel en erg energiezuinig.

Martijn Heck is sinds 2020 hoogleraar fotonica aan de Technische Universiteit Eindhoven, na eerder werkzaam te zijn geweest aan de Universiteit van Aarhus in Denemarken, waar hij in 2013 de Photonic Integrated Circuits-groep oprichtte. Het probleem met fotonica, zo zegt hij, is dat het niet schaalt. Het is vooralsnog dus onmogelijk fotonische schakelingen te maken die even klein zijn als elektronische transistors. Alleen al om die reden zal fotonica niet de transistor vervangen, aldus Heck tijdens een videogesprek. “Fotonica is te grofstoffelijk.” De voordelen van fotonica blijken subtieler. Fotonica, zo verzekert Heck, is goed in lengte. In het verzenden van data over lange afstanden dus. Glasvezelverbindingen vormen het ultieme voorbeeld, maar met de hoge datasnelheden van en naar de huidige microprocessors zijn decimeters en centimeters eveneens niet te negeren afstanden. Fotonica is daarom de aangewezen technologie om in datacenters servers met elkaar te verbinden. Dit wordt al in praktijk gebracht. Energiebesparing is daartoe opnieuw de belangrijkste stimulans.

©PXimport

Multiplexen

De volgende stap is het verbinden van verschillende chips binnen één systeem. Het Californische bedrijf AyarLabs bijvoorbeeld beweert een technologie in huis te hebben waarmee over afstanden van enkele millimeters tot twee kilometer bandbreedtes kunnen worden behaald die duizend keer hoger liggen dan die van traditionele elektrische verbindingen, bij een tien keer zo laag energieverbruik.

Heck is ervan overtuigd dat in de toekomst de verschillende onderdelen van één en dezelfde chip met fotonica verbonden zullen worden. Dat is nu nog problematisch, omdat het om heel korte afstanden gaat, waarbij de omzetting van elektronisch naar fotonisch en terug een wissel trekt op het energieverbruik. Dat er niettemin toekomst in zit, komt door de hoge bandbreedtes die behaald kunnen worden door te multiplexen: verschillende golflengtes kunnen tegelijkertijd over hetzelfde kanaal worden verzonden. Want niet alleen bandbreedte, maar ook bandbreedtedichtheid kan in huidige chips problematisch zijn, aldus Heck. “Denk in termen van het aantal pinnetjes waarmee de chip op het moederbord vast zit. Dat is beperkt. Multiplexen is daarom een goede oplossing.” Voor dat dit allemaal goed mogelijk is, dienen er nog wel wat materiaaltechnische hindernissen overwonnen te worden. Op dit moment berust de hele halfgeleiderindustrie op silicium. Dat is helaas een materiaal dat niet geneigd is licht uit te zenden. Er wordt daarom volop geëxperimenteerd met andere materialen, zoals galliumarsenide en indiumfosfide, die wel in staat zijn binnen een chip fotonen te produceren. Maar de integratie van zulke materialen in bestaande productielijnen voor chips is niet triviaal.

Kwantumcomputers

Zodra deze problemen overwonnen zijn, voorziet Heck wel degelijk fotonische systemen die specifieke rekenkundige bewerkingen uit kunnen voeren. In theorie zijn optische computers megaparallel. Dat maakt ze geschikt voor specifieke toepassingen, zoals het doorzoeken van databases. Het Britse bedrijf Optalysys pioniert hierin. Het parallelle karakter van fotonica maakt het ook geschikt voor neuromorfische processors: chips die net als dierlijke hersenen signalen tegen elkaar afwegen. In moderne SoC’s zijn zulke modules soms al aanwezig ter ondersteuning van machine learning en AI. Heck stelt zich voor dat zulke modules in de toekomst fotonisch van aard zullen zijn. Ze zullen veel krachtiger zijn dan de huidige neuromorfische modules, vanwege het feit dat licht uitgesplitst kan worden in verschillende frequenties die parallel verwerkt kunnen worden.

Verrassend genoeg ontwaart Heck ook raakvlakken tussen fotonica en kwantumcomputing. Kwantumcomputers zijn apparaten die problemen oplossen door gebruik te maken van de meest fundamentele eigenschappen van de natuur, zoals die beschreven worden door de kwantummechanica. Volgens deze theorie, die de afgelopen honderd jaar aan alle kanten experimenteel bevestigd is, bevinden elementaire deeltjes zich van nature in een zogenaamde superpositie. Dit is een vrij complex natuurkundig concept, maar in een kwantumcomputer betekent het dat de basiseenheid van informatie geen bit is, maar een qubit. Waar een bit 0 of 1 is, is een qubit een superpositie van deze twee toestanden. Qubits kunnen bovendien met elkaar verstrengeld zijn, een mysterieuze toestand waar Einstein zelf nog zijn tanden op stuk heeft gebeten. Hoe dan ook, de theorie voorspelt dat kwantumcomputers in principe reusachtig krachtig zijn in, vooral, het ontrafelen van processen in de natuur. De verwachting is dat ze zullen leiden tot doorbraken in onder meer de materiaalkunde en de farmacie.

©PXimport

Wie zegt dat hij de kwantumfysica begrijpt, heeft er volgens Feynman niets van begrepen

-

Xanadu en PsiQuantum

De even beroemde als excentrieke natuurkundige Richard Feynman zei ooit dat wanneer iemand zegt de kwantumfysica te begrijpen, dat het bewijs vormt dat hij er niets van begrepen heeft. Onderzoekers die kwantumcomputers proberen te ontwerpen, tasten inderdaad voor een belangrijk deel in het duister. Het principe lijkt te werken, maar het blijkt uiterst moeilijk om het aantal qubits op te schalen tot het niveau waarop een apparaat werkelijk bruikbaar wordt. Elke toegevoegde qubit verdubbelt weliswaar de rekenkracht, maar dat lijkt ook te gelden voor de complexiteit van het systeem. IBM heeft niettemin simpele kwantumcomputers online staan waar geïnteresseerden nu al eenvoudige bewerkingen op uit kunnen voeren.

Fysieke qubits kunnen uit allerlei deeltjes (of grotere objecten) bestaan. Die dienen meestal wel tot bijna het absolute nulpunt afgekoeld te worden om te voorkomen dat omgevingsinvloeden de superpositie om zeep helpen. Fotonen daarentegen kunnen ook bij kamertemperatuur als qubits worden gebruikt. De Canadese start-up Xanadu presenteerde dit voorjaar ‘s werelds eerste fotonische kwantumchip. En deze zomer haalde het Californische bedrijf PsiQuantum 450 miljoen dollar op voor de ontwikkeling van de Q1: een op silicium gebaseerde fotonische kwantumcomputer met superieure foutcorrectie – een heet hangijzer in de wereld van de kwantumcomputing.

©PXimport

Wereldspelers à la ASML

Te midden van deze ontwikkeling rijst de vraag: in welke ontwikkelingsfase bevindt de fotonica zich als je het vergelijkt met de ontwikkeling van de micro-elektronica, als we de eerste Intel-chip uit 1971 als ijkpunt nemen? “In de buurt van 1980”, zegt Heck. Dat is een intrigerend antwoord. Dat betekent namelijk dat deze industrie een grote toekomst tegemoet gaat. Heck bevestigt dat hij exponentiële groei voor zich ziet.

Of jonge Nederlandse fotonicabedrijven zullen uitgroeien tot wereldspelers à la ASML, valt volgens Heck niet te zeggen. Dat hangt volgens hem ook sterk af van de manier waarop de huidige giganten, zoals de Taiwanese chipfabrikant TSMC, op deze ontwikkelingen inspelen. Hij benadrukt wel dat we in Nederland over ‘strategische technologie’ beschikken. De overheid onderkent dat ook. Vorig jaar nam het ministerie van Economische Zaken deel aan een investering van 35 miljoen euro in het Eindhovense SMART Photonics, maker van fotonische chips op basis van indiumfosfide. Zonder dat geld was dit innovatieve bedrijf met 75 werknemers hoogstwaarschijnlijk in Aziatische handen gevallen. Of de Wet van Moore gered zal worden door fotonica, lijkt inmiddels de verkeerde vraag. Moores vuistregel heeft eigenlijk alleen betrekking op de traditionele computerchip. Maar met fotonica slaat de computerindustrie een weg naar onbekend terrein in. Wellicht wacht aan de horizon de heilige graal in de vorm van een superkrachtige fotonische kwantumcomputer. Maar energiezuinige datacenters zijn ook de moeite waard.

©PXimport

De twee gezichten van het licht

Licht is een van de meest alomtegenwoordige natuurverschijnselen. Het is dan ook niet vreemd dat licht in allerlei scheppingsmythes prominent figureert. Toch bleef het lang een van de meest ongrijpbare verschijnselen. De wijsgeren van het klassieke Griekenland, die voor hun tijd zeer methodisch over de wereld nadachten, zaten verschrikkelijk fout. Epicurus (341-270 voor Christus) geloofde dat de wereld louter uit atomen en leegte bestond. In zijn Brief aan Herodotus speculeerde hij dat objecten voortdurend heel dunne, uit atomen bestaande vliesjes afscheiden. Zodra zo’n atomair vliesje ons in de ogen vliegt, wordt het object zichtbaar. Plato zat minstens even fout door te veronderstellen dat we zien doordat onze ogen stralen uitzenden. Pas in de 11de eeuw maakte de Arabische wetenschapper Alhazen korte metten met dit idee. De Hagenaar Christiaan Huygens (1629-1695) was ervan overtuigd dat licht uit een golf bestaat dat door een vooralsnog onbekend medium zou reizen. Zijn tijdgenoot Isaac Newton was het daar niet mee eens. Hij vond het gedrag van licht makkelijker te verklaren door aan te nemen dat het uit deeltjes bestond. Deze theorie werd leidend, totdat James Maxwell in 1865 voorspelde dat licht een golf is in het zogenoemde elektromagnetische veld en Heinrich Hertz dat in 1888 overtuigend bewees. Maxwells theorie vertoonde wel lacunes. Die bleken oplosbaar door te veronderstellen dat zijn golven op hun beurt uit brokjes bestaan: de zogenoemde kwanta van het elektromagnetische veld, oftewel fotonen, afgeleid van het Griekse woord voor licht. Albert Einstein ontving in 1921 de Nobelprijs voor zijn bedrage aan deze theorie. Licht bestaat dus uit golven én deeltjes Deze ‘golf-deeltjesdualiteit’ is tegenwoordig algemeen aanvaard.

Het is wachten op de eerste superkrachtige fotonische kwantumcomputer

-

▼ Volgende artikel
Waar voor je geld: 5 betaalbare smartphones voor minder dan 300 euro
Huis

Waar voor je geld: 5 betaalbare smartphones voor minder dan 300 euro

In de rubriek Waar voor je geld gaan we op zoek naar producten waar je niet de hoofdprijs voor betaalt. Een aantal keer per week geven we je een overzicht van deze producten. Dit keer: vijf moderne smartphones die voor minder dan 300 euro in de winkel liggen.

Een nieuwe smartphone hoeft niet duur te zijn. Wie goed zoekt, vindt voor minder dan 300 euro verrassend complete toestellen met scherpe schermen, snelle hardware en degelijke camera’s. In dit overzicht vind je vijf recente smartphones die binnen dit budget vallen. Ze bieden elk hun eigen balans tussen prestaties, opslagruimte en accuduur. De één blinkt uit in schermkwaliteit, de ander juist in snelheid of camera-opties. Hieronder lees je wat je van elk toestel kunt verwachten, zonder poespas of verkooppraatjes.

Samsung Galaxy A56

Met de Galaxy A56 richt Samsung zich op gebruikers die een groot scherm en snelle 5G-connectiviteit willen zonder de prijs van een topmodel. Dit toestel heeft een 6,7-inch Super AMOLED-scherm met een resolutie van 1080 × 2340 pixels. Binnenin draait een Samsung Exynos-processor met 8 GB werkgeheugen en 128 GB opslag, uitbreidbaar via een geheugenkaart. De hoofdcamera heeft een resolutie van 50 megapixel, aangevuld met ultragroothoek- en dieptesensoren. De batterij van 5000 mAh ondersteunt 25 W snelladen. Het toestel werkt met Android 14 en biedt ondersteuning voor dual-sim en 5G-netwerken.

Energy Label B
Specificaties

Schermgrootte: 6,7 inch
Soort scherm: Super AMOLED
Werking op volle accu:
44u34min
Aantal megapixels:
50
Opslag:
128 GB

OPPO Reno 12 5G

De Reno 12 heeft een afgerond OLED-scherm van 6,7 inch met een verversingssnelheid van 120 Hz. Het toestel draait op de MediaTek Dimensity 7300-processor met 12 GB RAM en 256 GB opslagruimte. De hoofdcamera telt 50 megapixel en wordt bijgestaan door een ultragroothoek- en dieptecamera. De batterij heeft een capaciteit van 5000 mAh en ondersteunt 80 W snelladen via USB-C. Deze telefoon draait op Android 14 met ColorOS. Het toestel ondersteunt 5G, dual-sim en Wi-Fi 6, en beschikt over een vingerafdrukscanner onder het scherm.

Energy Label F
Specificaties

Schermgrootte: 6,7 inch
Soort scherm:
OLED
Werking op volle accu:
niet opgegeven
Aantal megapixels:
50 MP
Opslag:
256 GB

Motorola Edge 50 Neo

De Motorola Edge 50 Neo beschikt over een 6,55-inch P-OLED-display met een resolutie van 2400 × 1080 pixels en een verversingssnelheid van 120 Hz. Binnenin zit de Qualcomm Snapdragon 7s Gen 2, gekoppeld aan 12 GB RAM en 512 GB interne opslag. De hoofdcamera heeft een 50-megapixelsensor met optische beeldstabilisatie, de tweede lens is een 13-megapixel ultragroothoek. De batterij heeft een capaciteit van 5000 mAh en ondersteunt 68 W snelladen. De telefoon draait op Android 14 en heeft 5G, NFC en dual-sim.

Energy Label A
Specificaties

Schermgrootte: 6,5 inch
Soort scherm: P-OLED
Werking op volle accu:
50u44m
Aantal megapixels:
50 MP
Opslag:
512 GB

Samsung Galaxy A16

De Galaxy A16 is een toestel met een 6,5-inch PLS-LCD-scherm met een resolutie van 1600 × 720 pixels. De telefoon werkt met de MediaTek Helio G85-processor en 4 GB werkgeheugen, met 128 GB opslag. De camera achterop bestaat uit drie lenzen, waarvan de hoofdcamera 50 megapixel heeft. De batterij van 5000 mAh ondersteunt 15 W snelladen. Het toestel draait op Android 14 met One UI. De telefoon heeft een 3,5-mm-aansluiting en ruimte voor twee simkaarten.

Energy Label B
Specificaties

Schermgrootte: 6,5 inch
Soort scherm: LCD
Werking op volle accu:
43u30m
Aantal megapixels:
50 MP
Opslag:
128 GB

Xiaomi Redmi Note 14 5G

De Redmi Note 14 5G heeft een 6,6-inch AMOLED-scherm met een verversingssnelheid van 120 Hz. Binnenin zit de Snapdragon 4 Gen 2-chip, samen met 8 GB RAM en 256 GB opslagruimte. De hoofdcamera aan de achterkant heeft 108 megapixel, terwijl de frontcamera 16 megapixel levert. De batterij van 5000 mAh ondersteunt 33 W snelladen via USB-C. Het toestel biedt ondersteuning voor 5G, Bluetooth 5.3, NFC en een infraroodzender. Android 14 met MIUI vormt de softwarebasis.

Energy Label D
Specificaties

Schermgrootte: 6,6 inch
Soort scherm:
AMOLED
Werking op volle accu:
38u56m
Aantal megapixels:
108 MP
Opslag:
256 GB

▼ Volgende artikel
LG komt met 6K-monitor
Huis

LG komt met 6K-monitor

LG heeft een nieuwe monitor aangekondigd voor creatieve professionals: de UltraFine evo 6K (model 32U990A). Dit scherm valt op als de eerste 6K-monitor met Thunderbolt 5-ondersteuning en richt zich op gebruikers die werken met zware videoprojecten, grafisch ontwerp of andere veeleisende taken.

De 32U990A heeft een resolutie van 6.144 bij 3.456 pixels en een pixeldichtheid van 224 PPI. Dat zorgt voor bijzonder scherpe tekst en een hoge detailweergave. Volgens LG is het scherm in de fabriek gekalibreerd voor consistente kleuren binnen macOS. De monitor dekt bijna de volledige DCI-P3- en Adobe RGB-kleurruimte, wat hem geschikt maakt voor foto- en videobewerking en drukwerk. Ook voldoet hij aan de VESA DisplayHDR 600-standaard, wat zorgt voor een goede helderheid en kleurechtheid. Daarnaast heeft LG een Studio Mode toegevoegd, met drie kleurprofielen die speciaal zijn bedoeld voor Mac-gebruikers.

De UltraFine evo 6K biedt 2,5 keer zoveel pixels als een 4K-scherm, en wie twee van deze monitoren naast elkaar gebruikt, krijgt bijna vijf keer zoveel werkruimte. Via Thunderbolt 5 kunnen gebruikers bovendien eenvoudig meerdere schermen koppelen. De monitor kan ook dienen als hub, met ingebouwde KVM-switch en diverse aansluitingen, waarmee snel tussen Mac- en Windows-systemen kan worden gewisseld.

Dankzij de Thunderbolt 5-ondersteuning haalt de monitor overdrachtssnelheden tot 120 Gbps, drie keer sneller dan Thunderbolt 4. Dat maakt hem geschikt voor het werken met zware 8K-RAW-bestanden en real-time 4K-rendering. Het ontwerp is strak en vrijwel randloos, en het scherm kan in hoogte worden versteld of verticaal worden gedraaid – handig voor wie veel met verticale content werkt. Er zijn minder kabels nodig, wat zorgt voor een opgeruimde werkplek.

“Nu veel videomakers meerdere projecten tegelijk beheren, is de behoefte aan ultrahoge resolutie, nauwkeurige kleuren en snelle verbindingen groter dan ooit,” zegt YS Lee, hoofd van de IT-divisie van LG Media Entertainment Solution Company. “Met de UltraFine evo 6K bieden we een toekomstbestendig scherm van compromisloze kwaliteit, waarmee professionals sneller, slimmer en beter kunnen werken.”

Beschikbaarheid en prijzen

De LG UltraFine evo 6K-monitor wordt in oktober in Europa en de VS uitgebracht, maar een adviesprijs is nog niet bekendgemaakt.