ID.nl logo
Wat zijn fotonische chips?
© Reshift Digital
Huis

Wat zijn fotonische chips?

Decennialang werden computers sneller, omdat de componenten op de chips steeds kleiner werden. Maar nu de grenzen van het mogelijke in zicht komen, wenden chipontwerpers zich tot de fotonica. Deze technologie belooft niet alleen enorme energiebesparing, maar mogelijk ook werkelijk bruikbare kwantumcomputers. Wat zijn fotonische chips precies?

“Er bestaat geen reden waarom iedereen thuis een computer zou willen hebben.” Ken Olsen, medeoprichter van het computerbedrijf Digital Equipment Corporation, sprak deze woorden in 1977. En hij had gelijk, want destijds hadden de meeste mensen niets aan zo’n ding. Pas na zo’n vijftien jaar werden pc’s gemeengoed in huishoudens en wat later kwamen de mobiele telefoon en zijn opvolger de smartphone op. Op een enkele hoogbejaarde na heeft iedereen inmiddels altijd zo’n zakcomputer bij de hand. Vergeleken met de computers uit de jaren 70 zijn dat formidabele apparaten. Wanneer je toen voorspeld zou hebben dat iedereen met een snoerloos plankje zou kunnen filmen, navigeren, beeldbellen en betalen en dat we er in permanent contact met bekenden mee zouden staan, dan zou dat louter meewarige blikken hebben uitgelokt.

Kwantummechanische wetten

Een minicomputer die alles kan en waar je zelfs mondelinge vragen aan kunt stellen, moet wel een enorm geoptimaliseerd apparaat zijn. Dat is inderdaad het geval. Smartphones zouden niet mogelijk zijn zonder uiterst compacte componenten, waaronder vooral de microprocessor. De allereerste processor, de Intel 4004 uit 1971, telde 2300 transistors. Tegenwoordig is 15 miljard geen uitzondering. De kloksnelheid bedroeg 740 kilohertz, oftewel zo’n 4000 keer trager dan wat tegenwoordig de norm is. En met 10 micrometer waren de transistors op deze oerchip ook nog eens zo’n 1000 tot 2000 keer groter dan de 10- of 5-nanometer-componenten op de huidige chips.

Hoe fantastisch ook, dit feest kan volgens veel deskundigen niet eeuwig doorgaan. Chips zijn gemaakt van silicium. Een siliciumatoom heeft een doorsnee van ruwweg 0,2 nanometer. De grenzen van de miniaturisering zijn dus in zicht. Daar komt bij dat elektronen, die de dragers van informatie zijn in deze transistors, op deze schaal grillig gedrag vertonen. De kwantummechanische wetten die het gedrag van elementaire deeltjes beschrijven, staan toe dat elektronen zich plotseling op een andere plek bevinden of zelfs op twee plekken tegelijk. Uiteraard is dit niet best voor de stabiliteit van een chip.

©PXimport

System on a chip

Volgens pessimisten komt hiermee een einde aan de Wet van Moore, de vuistregel dat het aantal transistors op een chip pakweg elke twee jaar verdubbelt. Nieuwe processors, zo vrezen ze, zullen niet meer de spectaculaire prestatiesprongen laten zien waaraan we gewend en verslaafd zijn geraakt. Nu zijn ontwerpers van chips gelukkig niet voor één gat te vangen. Het succes van de smartphone is gebaseerd op de uitvinding van de ‘system on a chip’, oftewel SoC. Door de processor, de grafische processor, het werkgeheugen en andere vitale onderdelen op één chip samen te brengen, kan flink wat ruimte en energie worden bespaard. Een laag energieverbruik is essentieel in mobiele apparaten: de accu raakt minder snel leeg en er hoeft minder warmte te worden afgevoerd. Traditionele laptopprocessors, zoals die van Intel, worden bij intensieve taken zo heet dat de chip zelfs bij een loeiende ventilator zijn kloksnelheid moet terugschakelen. SoC’s, zoals de M1-chip in de nieuwste laptops van Apple, blijven dermate koel dat een ventilator meer luxe dan noodzaak is. De nieuwste MacBook Air bevat er dan ook geen.

De regel dat het aantal transistors elke twee jaar verdubbelt, gaat niet zo lang meer mee

-

Geen vreemde eend

Maar hoe slim ook ontworpen, ook SoC’s lopen tegen de grenzen van de miniaturisering aan. Daarom beginnen chipontwerpers aan het fundamentele karakter van de traditionele siliciumchip te morrelen. Zoals we al zagen, is een chip een apparaat waarin groepjes elektronen heen en weer geschoven worden. Dat zijn elementaire deeltjes met een massa en een elektrische lading. Ze zijn daardoor gemakkelijk te manipuleren. Maar wanneer ze bewegen, warmen ze hun omgeving op. Er bestaat ook een deeltje dat dit nadeel niet heeft: het foton. Dit deeltje, feitelijk het kwantum van het elektromagnetische veld, is bepaald geen vreemde bijt in de ICT-industrie. Het wordt al jaren gebruikt om data te verzenden door glasvezelkabels en ook LiDAR berust op het uitzenden en opvangen van fotonen. Maar zodra deze deeltjes in een computer aankomen, geven ze het estafettestokje door aan elektronen, zodat er bewerkingen op kunnen worden uitgevoerd. Het onderzoeksveld dat zich met deze wisselwerking tussen fotonen en elektronen bezig houdt, wordt fotonica genoemd.

©PXimport

Grofstoffelijk

Fotonen kunnen dus worden gebruikt om data te verzenden en de omgeving te scannen, maar vooralsnog niet om te rekenen. Dat is teleurstellend, want fotonische schakelingen zijn in theorie ontzettend snel en erg energiezuinig.

Martijn Heck is sinds 2020 hoogleraar fotonica aan de Technische Universiteit Eindhoven, na eerder werkzaam te zijn geweest aan de Universiteit van Aarhus in Denemarken, waar hij in 2013 de Photonic Integrated Circuits-groep oprichtte. Het probleem met fotonica, zo zegt hij, is dat het niet schaalt. Het is vooralsnog dus onmogelijk fotonische schakelingen te maken die even klein zijn als elektronische transistors. Alleen al om die reden zal fotonica niet de transistor vervangen, aldus Heck tijdens een videogesprek. “Fotonica is te grofstoffelijk.” De voordelen van fotonica blijken subtieler. Fotonica, zo verzekert Heck, is goed in lengte. In het verzenden van data over lange afstanden dus. Glasvezelverbindingen vormen het ultieme voorbeeld, maar met de hoge datasnelheden van en naar de huidige microprocessors zijn decimeters en centimeters eveneens niet te negeren afstanden. Fotonica is daarom de aangewezen technologie om in datacenters servers met elkaar te verbinden. Dit wordt al in praktijk gebracht. Energiebesparing is daartoe opnieuw de belangrijkste stimulans.

©PXimport

Multiplexen

De volgende stap is het verbinden van verschillende chips binnen één systeem. Het Californische bedrijf AyarLabs bijvoorbeeld beweert een technologie in huis te hebben waarmee over afstanden van enkele millimeters tot twee kilometer bandbreedtes kunnen worden behaald die duizend keer hoger liggen dan die van traditionele elektrische verbindingen, bij een tien keer zo laag energieverbruik.

Heck is ervan overtuigd dat in de toekomst de verschillende onderdelen van één en dezelfde chip met fotonica verbonden zullen worden. Dat is nu nog problematisch, omdat het om heel korte afstanden gaat, waarbij de omzetting van elektronisch naar fotonisch en terug een wissel trekt op het energieverbruik. Dat er niettemin toekomst in zit, komt door de hoge bandbreedtes die behaald kunnen worden door te multiplexen: verschillende golflengtes kunnen tegelijkertijd over hetzelfde kanaal worden verzonden. Want niet alleen bandbreedte, maar ook bandbreedtedichtheid kan in huidige chips problematisch zijn, aldus Heck. “Denk in termen van het aantal pinnetjes waarmee de chip op het moederbord vast zit. Dat is beperkt. Multiplexen is daarom een goede oplossing.” Voor dat dit allemaal goed mogelijk is, dienen er nog wel wat materiaaltechnische hindernissen overwonnen te worden. Op dit moment berust de hele halfgeleiderindustrie op silicium. Dat is helaas een materiaal dat niet geneigd is licht uit te zenden. Er wordt daarom volop geëxperimenteerd met andere materialen, zoals galliumarsenide en indiumfosfide, die wel in staat zijn binnen een chip fotonen te produceren. Maar de integratie van zulke materialen in bestaande productielijnen voor chips is niet triviaal.

Kwantumcomputers

Zodra deze problemen overwonnen zijn, voorziet Heck wel degelijk fotonische systemen die specifieke rekenkundige bewerkingen uit kunnen voeren. In theorie zijn optische computers megaparallel. Dat maakt ze geschikt voor specifieke toepassingen, zoals het doorzoeken van databases. Het Britse bedrijf Optalysys pioniert hierin. Het parallelle karakter van fotonica maakt het ook geschikt voor neuromorfische processors: chips die net als dierlijke hersenen signalen tegen elkaar afwegen. In moderne SoC’s zijn zulke modules soms al aanwezig ter ondersteuning van machine learning en AI. Heck stelt zich voor dat zulke modules in de toekomst fotonisch van aard zullen zijn. Ze zullen veel krachtiger zijn dan de huidige neuromorfische modules, vanwege het feit dat licht uitgesplitst kan worden in verschillende frequenties die parallel verwerkt kunnen worden.

Verrassend genoeg ontwaart Heck ook raakvlakken tussen fotonica en kwantumcomputing. Kwantumcomputers zijn apparaten die problemen oplossen door gebruik te maken van de meest fundamentele eigenschappen van de natuur, zoals die beschreven worden door de kwantummechanica. Volgens deze theorie, die de afgelopen honderd jaar aan alle kanten experimenteel bevestigd is, bevinden elementaire deeltjes zich van nature in een zogenaamde superpositie. Dit is een vrij complex natuurkundig concept, maar in een kwantumcomputer betekent het dat de basiseenheid van informatie geen bit is, maar een qubit. Waar een bit 0 of 1 is, is een qubit een superpositie van deze twee toestanden. Qubits kunnen bovendien met elkaar verstrengeld zijn, een mysterieuze toestand waar Einstein zelf nog zijn tanden op stuk heeft gebeten. Hoe dan ook, de theorie voorspelt dat kwantumcomputers in principe reusachtig krachtig zijn in, vooral, het ontrafelen van processen in de natuur. De verwachting is dat ze zullen leiden tot doorbraken in onder meer de materiaalkunde en de farmacie.

©PXimport

Wie zegt dat hij de kwantumfysica begrijpt, heeft er volgens Feynman niets van begrepen

-

Xanadu en PsiQuantum

De even beroemde als excentrieke natuurkundige Richard Feynman zei ooit dat wanneer iemand zegt de kwantumfysica te begrijpen, dat het bewijs vormt dat hij er niets van begrepen heeft. Onderzoekers die kwantumcomputers proberen te ontwerpen, tasten inderdaad voor een belangrijk deel in het duister. Het principe lijkt te werken, maar het blijkt uiterst moeilijk om het aantal qubits op te schalen tot het niveau waarop een apparaat werkelijk bruikbaar wordt. Elke toegevoegde qubit verdubbelt weliswaar de rekenkracht, maar dat lijkt ook te gelden voor de complexiteit van het systeem. IBM heeft niettemin simpele kwantumcomputers online staan waar geïnteresseerden nu al eenvoudige bewerkingen op uit kunnen voeren.

Fysieke qubits kunnen uit allerlei deeltjes (of grotere objecten) bestaan. Die dienen meestal wel tot bijna het absolute nulpunt afgekoeld te worden om te voorkomen dat omgevingsinvloeden de superpositie om zeep helpen. Fotonen daarentegen kunnen ook bij kamertemperatuur als qubits worden gebruikt. De Canadese start-up Xanadu presenteerde dit voorjaar ‘s werelds eerste fotonische kwantumchip. En deze zomer haalde het Californische bedrijf PsiQuantum 450 miljoen dollar op voor de ontwikkeling van de Q1: een op silicium gebaseerde fotonische kwantumcomputer met superieure foutcorrectie – een heet hangijzer in de wereld van de kwantumcomputing.

©PXimport

Wereldspelers à la ASML

Te midden van deze ontwikkeling rijst de vraag: in welke ontwikkelingsfase bevindt de fotonica zich als je het vergelijkt met de ontwikkeling van de micro-elektronica, als we de eerste Intel-chip uit 1971 als ijkpunt nemen? “In de buurt van 1980”, zegt Heck. Dat is een intrigerend antwoord. Dat betekent namelijk dat deze industrie een grote toekomst tegemoet gaat. Heck bevestigt dat hij exponentiële groei voor zich ziet.

Of jonge Nederlandse fotonicabedrijven zullen uitgroeien tot wereldspelers à la ASML, valt volgens Heck niet te zeggen. Dat hangt volgens hem ook sterk af van de manier waarop de huidige giganten, zoals de Taiwanese chipfabrikant TSMC, op deze ontwikkelingen inspelen. Hij benadrukt wel dat we in Nederland over ‘strategische technologie’ beschikken. De overheid onderkent dat ook. Vorig jaar nam het ministerie van Economische Zaken deel aan een investering van 35 miljoen euro in het Eindhovense SMART Photonics, maker van fotonische chips op basis van indiumfosfide. Zonder dat geld was dit innovatieve bedrijf met 75 werknemers hoogstwaarschijnlijk in Aziatische handen gevallen. Of de Wet van Moore gered zal worden door fotonica, lijkt inmiddels de verkeerde vraag. Moores vuistregel heeft eigenlijk alleen betrekking op de traditionele computerchip. Maar met fotonica slaat de computerindustrie een weg naar onbekend terrein in. Wellicht wacht aan de horizon de heilige graal in de vorm van een superkrachtige fotonische kwantumcomputer. Maar energiezuinige datacenters zijn ook de moeite waard.

©PXimport

De twee gezichten van het licht

Licht is een van de meest alomtegenwoordige natuurverschijnselen. Het is dan ook niet vreemd dat licht in allerlei scheppingsmythes prominent figureert. Toch bleef het lang een van de meest ongrijpbare verschijnselen. De wijsgeren van het klassieke Griekenland, die voor hun tijd zeer methodisch over de wereld nadachten, zaten verschrikkelijk fout. Epicurus (341-270 voor Christus) geloofde dat de wereld louter uit atomen en leegte bestond. In zijn Brief aan Herodotus speculeerde hij dat objecten voortdurend heel dunne, uit atomen bestaande vliesjes afscheiden. Zodra zo’n atomair vliesje ons in de ogen vliegt, wordt het object zichtbaar. Plato zat minstens even fout door te veronderstellen dat we zien doordat onze ogen stralen uitzenden. Pas in de 11de eeuw maakte de Arabische wetenschapper Alhazen korte metten met dit idee. De Hagenaar Christiaan Huygens (1629-1695) was ervan overtuigd dat licht uit een golf bestaat dat door een vooralsnog onbekend medium zou reizen. Zijn tijdgenoot Isaac Newton was het daar niet mee eens. Hij vond het gedrag van licht makkelijker te verklaren door aan te nemen dat het uit deeltjes bestond. Deze theorie werd leidend, totdat James Maxwell in 1865 voorspelde dat licht een golf is in het zogenoemde elektromagnetische veld en Heinrich Hertz dat in 1888 overtuigend bewees. Maxwells theorie vertoonde wel lacunes. Die bleken oplosbaar door te veronderstellen dat zijn golven op hun beurt uit brokjes bestaan: de zogenoemde kwanta van het elektromagnetische veld, oftewel fotonen, afgeleid van het Griekse woord voor licht. Albert Einstein ontving in 1921 de Nobelprijs voor zijn bedrage aan deze theorie. Licht bestaat dus uit golven én deeltjes Deze ‘golf-deeltjesdualiteit’ is tegenwoordig algemeen aanvaard.

Het is wachten op de eerste superkrachtige fotonische kwantumcomputer

-

▼ Volgende artikel
Waar voor je geld: vijf Android-tablets met een 10 inch-scherm en groter
© lev dolgachov
Huis

Waar voor je geld: vijf Android-tablets met een 10 inch-scherm en groter

Bij ID.nl zijn we dol op kwaliteitsproducten waar je niet de hoofdprijs voor betaalt. Een paar keer per week speuren we binnen een bepaald thema naar zulke deals. Zoek je een goede tablet met een lekker groot scherm? We hebben vijf mooie exemplaren voor je gevonden.

Lenovo Tab M11 (ZADA0134SE)

Lenovo bewijst met zijn Tab M11 dat een goede tablet helemaal niet zo veel geld hoeft te kosten. Zo komen diverse onafhankelijke testers op Kieskeurig.nl tot een gemiddelde score van een 9. Vaak benoemde pluspunten zijn onder meer de hoge beeldkwaliteit, de lange accuduur en het goede geluid. Verder vinden gebruikers het prettig dat er al een stylus is inbegrepen. Handig voor wie graag tekeningen of handgeschreven notities maakt. Het lcd-scherm telt 1920 × 1200 pixels. De resolutie is weliswaar wat lager vergeleken met die van duurdere modellen, maar je kunt nog altijd films in Full-HD-kwaliteit streamen. De beelden ogen op het 11inch-scherm dan ook scherp. Ondanks de lage aanschafprijs heeft deze stevige tablet een metalen behuizing.

Voor het opslaan van apps en eigen data bevat de Tab M11 128 GB intern geheugen. Breid dat desgewenst uit met een eigen microSD-kaart van maximaal 1 TB. Het rekencentrum bestaat uit de veelgebruikte MediaTek Helio G88-processor en 4 GB werkgeheugen. Voor basistaken als e-mailen, internetten, webwinkelen en video's streamen is dat ruimschoots voldoende.

Samsung Galaxy Tab S9+ WiFi

Zoek je een krachtige tablet met een groot scherm? De Samsung Galaxy Tab S9+ WiFi heeft amoledscherm van 12,4 inch. Dat is een prettig formaat om bijvoorbeeld de digitale krant te lezen of Netflix-series te bingewatchen. Verder draait de aanwezige Qualcomm Snapdragon 8 Gen 2-processor zijn hand niet om voor zware taken, zoals het spelen van 3D-games of monteren van video's. Deze chipset bevat acht rekenkernen waarvan de snelste cores zijn afgeregeld op een maximale klokfrequentie van 3,36 GHz. In combinatie met 12 GB werkgeheugen kun je vlot op deze tablet werken. Gebruik hiervoor eventueel de bijgesloten drukgevoelige stylus.

Voor beeldbewerkingen komt de respectabele resolutie van 2800 × 1752 pixels goed van pas. Foto's en video's ogen hierop haarscherp. Daarnaast ondersteunt het amoledscherm een vernieuwingsfrequentie van 120 hertz. Je speelt dus snelle games zonder haperingen. De basisuitvoering heeft 256 GB interne opslag. Kies tussen de kleurstellingen grafiet en beige. Je kunt de Galaxy Tab S9+ WiFi ook met 512 GB interne opslag kopen (grafiet/beige). Overigens heeft de waterdichte behuizing een microSD-kaartslot, waardoor je de opslagcapaciteit eenvoudig met maximaal 1 TB kunt uitbreiden.

Xiaomi Pad 6

De Xiaomi Pad 6 is een krachtige tablet die zich richt op zowel entertainment als productiviteit. Het absolute hoogtepunt is het 11-inch WQHD+ scherm met een verversingssnelheid van 144Hz. Dit zorgt voor een aanzienlijk vloeiender beeld. Onder de motorkap vind je een snelle Snapdragon 870-processor, waardoor zware apps en games moeiteloos draaien.

De tablet heeft een luxe, volledig metalen behuizing en vier luidsprekers met Dolby Atmos-ondersteuning voor een ruimtelijk geluid. De accu van 8840 mAh gaat lang mee en laadt snel op (33W). Let wel dat de optionele stylus niet standaard wordt meegeleverd.

Logicom Tab XXL

De naam zegt het al: de Logicom Tab XXL is een grote tablet voor wie graag wat meer ruimte op het scherm heeft. Met het grote 14,1-inch display kijk je comfortabel films en series, lees je makkelijk langere teksten en heb je genoeg overzicht als je meerdere apps tegelijk gebruikt. Hij leent zich goed voor dagelijkse dingen zoals surfen op internet, mailen, videobellen en het gebruiken van bekende Android-apps. Ook voor thuiswerken of studeren is het grote scherm prettig, bijvoorbeeld bij het bekijken van documenten of online vergaderingen.

De camera’s zijn handig voor videogesprekken en snelle foto’s, terwijl wifi en bluetooth het eenvoudig maken om accessoires zoals een koptelefoon of toetsenbord te koppelen. Door de flinke batterij kun je de tablet langere tijd gebruiken zonder steeds naar een oplader te hoeven grijpen. De meegeleverde hoes maakt het geheel net wat praktischer in gebruik, zowel op de bank als aan tafel.

Lenovo Tab P12 (ZACH0112SE)

De Lenovo Tab P12 heeft een schermdiagonaal van 12,7 inch. De resolutie is met 2944 × 1840 pixels eveneens prima op orde, zodat je foto's en video's in een hoge kwaliteit kunt bekijken. Verder heeft de fabrikant ook aan een goed geluid gedacht. De metalen behuizing bevat vier minispeakers van het bekende audiomerk JBL. Een bluetooth-koptelefoon koppelen kan uiteraard ook.

De Tab P12 geschikt voor alledaagse apps, zoals Facebook, YouTube, Chrome en simpele spelletjes. es rekenkernen presteren op 2 GHz, terwijl de twee resterende cores zijn geklokt op 2,6 GHz. Deze tablet heeft daarnaast 8 GB werkgeheugen en 128 GB interne opslag. Overigens breid je de opslagcapaciteit makkelijk uit met een eigen microSD-kaart van maximaal 1 TB. Lenovo levert bij dit product een stylus mee. Benieuwd naar ervaringen van andere gebruikers? Lees dan deze reviews op Kieskeurig.nl.

▼ Volgende artikel
Nieuwe Philips Airfryer Dual Stacked 4000 bespaart bijna de helft aan ruimte op het aanrecht
© Philips
Huis

Nieuwe Philips Airfryer Dual Stacked 4000 bespaart bijna de helft aan ruimte op het aanrecht

Philips breidt zijn assortiment heteluchtfriteuses uit met de Airfryer Dual Stacked 4000-serie. Je ziet meteen waar de naam vandaan komt: de twee bakmanden zijn gestapeld (stacked). Hierdoor neemt het apparaat tot 45 procent minder ruimte in op het aanrecht dan traditionele dubbele airfryers, terwijl de totale inhoud met 10 liter gelijk blijft aan grotere modellen.

Philips is niet de eerste die met een verticaal ontwerp komt. Merken als Ninja (met de Double Stack) en Princess hebben al soortgelijke modellen. Het is een duidelijke trend in de keukenmarkt: consumenten willen wel de voordelen van twee mandjes, maar hebben geen zin in een apparaat dat het halve aanrecht in beslag neemt.

De Philips Airfryer Dual Stacked 4000-serie richt zich vooral op huishoudens met kleine(re) keukens. De twee manden hebben elk een capaciteit van 5 liter, zodat je bijvoorbeeld vlees in de ene mand en groenten in de andere kunt bereiden. De synchronisatiefunctie zorgt ervoor dat beide zones op precies hetzelfde moment klaar zijn, ook als de bereidingstijden verschillen.

©Philips

Voor de bereiding leunt Philips op de bekende RapidAir-technologie, waarbij hete lucht met hoge snelheid door de manden circuleert. Volgens de fabrikant zorgt dat voor een gelijkmatige garing met weinig of geen olie. Handig zijn de kijkvensters: je houdt het bakproces in de gaten zonder dat je de laden hoeft te openen. Zo ontsnapt er niet onnodig warme lucht.

Je bedient de airfryer via een digitaal touchscreen met dertien voorgeprogrammeerde instellingen voor bekende gerechten. Wil je meer controle, dan kun je de temperatuur en tijd ook handmatig per mand instellen.

Ook handig: na afloop kunnen de losse onderdelen in de vaatwasser, wat het schoonmaken na het koken makkelijker maakt.

©Philips

Beschikbaarheid

De Philips Airfryer Dual Stacked 4000-serie is per direct verkrijgbaar bij diverse elektronicaspeciaalzaken en online winkels. Het apparaat heeft een adviesprijs van 229,99 euro.

Wat is RapidAir-technologie?

De meeste airfryers werken als een kleine heteluchtoven, maar de RapidAir-techniek van Philips onderscheidt zich door de vorm van de bodem in de bakmand. Deze heeft vaak een stervormig profiel (de 'zeespiegelbodem'). Hierdoor wordt de opstijgende hete lucht krachtig teruggekaatst en ontstaat er een werveling. Dit zorgt ervoor dat het voedsel van alle kanten direct wordt geraakt door de hitte, wat resulteert in een krokantere buitenkant zonder dat het product uitdroogt.