ID.nl logo
Huis

Maak een weerstation met je Arduino

Eerder schreven we al over de Arduino: een goedkope programmeerbare microcontroller die de basis vormt voor zelf in elkaar geknutselde projecten. Het kan nog leuker: een Arduino met ingebouwde wifi-chip maakt het mogelijk om ook aan internet verbonden projectjes te maken! We gaan aan de slag met het ontwikkelbordje NodeMCU om een weerstation te maken.

Zoals gezegd besteedden we al eerder in Computer!Totaal aandacht aan Arduino, een opensource elektronicaplatform dat je zelf kunt programmeren en kunt gebruiken in combinatie met elektronische componenten. Hier kun je op onze website een aantal artikelen over Arduino lezen. Erg leuk om mee te knutselen, maar het heeft één nadeel: het blijft door gebrek aan netwerkmogelijkheden bij lokale projecten.

Een Arduino met wifi opent deuren naar nieuwe mogelijkheden. Je kunt informatie van internet ophalen en tonen, of je Arduino bijvoorbeeld inzetten als sensor die jou waarschuwingen geef, ook als je buitenshuis bent. In deze cursus gaan we een dergelijke Arduino met wifi inzetten voor twee met internet verbonden projecten die beide met weersinformatie te maken hebben. We hebben gekozen voor de NodeMCU.

Het project Weeralarm laat je aan de hand van een brandend ledje in één oogopslag zien of er in jouw regio momenteel een weeralarm van kracht is, waarbij uiteraard onderscheid gemaakt wordt tussen de verschillende kleuren die het KNMI hanteert. Uiteraard zijn ledjes niet de enige manier waarop je informatie kunt tonen. In het tweede project, Weermonitor, gebruiken we daarom een oled-schermpje waarop we weersinformatie van een zelfgekozen weerstation in Nederland tonen. Eerst wat algemene uitleg.

01 Wat is de NodeMCU?

De NodeMCU is technisch gezien geen Arduino, maar een ontwikkelbordje gebaseerd op de ESP8266 wifi-module. Je kunt deze wifi-module ook los kopen en koppelen met een Arduino. De chip is echter zo krachtig dat hij ook functioneert als een complete microcontroller. Deze chip is herkenbaar als een zilverkleurig blokje op de printplaat.

Naast de ESP8266 bevat de NodeMCU een usb-interface voor de communicatie met de ontwikkelomgeving, een voedingscircuit en twee rijen aansluitpinnen voor gebruik op een breadboard. Het NodeMCU-ontwikkelbordje is oorspronkelijk ontwikkeld voor de NodeMCU-ontwikkelomgeving waarin de programmeertaal Lua gebruikt wordt. NodeMCU en het bijbehorende bordje zijn bedoeld om op een goedkope manier IoT-projecten te maken. Het werd echter nog leuker toen ontwikkelaars ondersteuning voor de ESP8266-chip in de Arduino-ontwikkelomgeving inbouwden. Hierdoor kun je bordjes op basis van ESP8266 zoals de NodeMCU als een Arduino-bordje gebruiken.

Het grote voordeel van de NodeMCU ten opzichte van andere Arduino-bordjes voorzien van wifi is dat dit bordje erg goedkoop is. Voor drie euro heb je een compleet bordje met ingebouwde wifi-radio, dat je kunt programmeren met de Arduino-ontwikkelomgeving. Je vind de NodeMCU-bordjes op bijvoorbeeld eBay of AliExpress. Let wel op dat je de juiste versie koopt, koop er een die wordt aangeduid met 1.0 of v2. De v3 (ook aangeduid als LoLin) is breder en past hierdoor niet goed op een breadboard.

©PXimport

02 Een hoop pinnen

Net als bij een Arduino kan het aantal aansluitpinnen op de NodeMCU wat afschrikken, maar wees gerust: we gebruiken er slechts een paar. Er zit bovendien nogal wat herhaling in, zo zijn er drie 3V3-aansluitingen (+3,3 volt) en zelfs vier GND-pinnen (ground of 0 volt). De aansluitingen met dezelfde namen zijn onderling doorverbonden. Voor de schakelingen die je in zelfgebouwde projecten gebruikt, zijn vooral de digitale aansluitingen (het rijtje D0 tot en met D8) van belang. Deze aansluitingen gebruiken we om digitale signalen te versturen en uit te lezen. Daarnaast bevat de NodeMCU ook de analoge ingang (A0). Deze ingang verwerkt analoge signalen en kun je bijvoorbeeld gebruiken om sensoren uit te lezen om omgevingsfactoren te meten, zoals temperatuur en vochtigheid. De reset-pin (RST) spreekt voor zich en VIN dient om de module te kunnen voeden zonder usb-kabel. Als de module wel via de usb-kabel is verbonden, is deze aansluiting te gebruiken voor externe componenten die meer dan 3,3 volt nodig hebben.

©PXimport

03 Werking breadboard

Om de NodeMCU te gebruiken voor projecten, sluit je componenten als leds en weerstanden met jumperdraden aan. Het breadboard is letterlijk de basis van de schakelingen. Alsof het ministeck is, steek je alle componenten in de gaatjes, zodat die componenten onderling worden verbonden. Het breadboard is opgebouwd uit drie delen: aan weerszijden twee blauw-rood gemarkeerde rijen gaatjes en een deel ertussenin met een soort gootje in het midden. De gaatjes van het breadboard zijn op een slimme manier met elkaar verbonden. De buitenste twee delen bestaan elk uit twee rijen onderling verbonden gaatjes. Je hebt dus aan weerszijden van het breadboard een rode en een blauwe rij over de volle lengte van het breadboard.

In het middelste deel zijn telkens vijf gaatjes met elkaar verbonden. Als je goed kijkt, zie je cijfers en letters die de gaatjes coördinaten geven. De letters zijn van elkaar gescheiden en de cijfers vormen twee rijtjes van vijf verbonden gaatjes. Zo zijn a15 t/m e15 met elkaar verbonden en f15 t/m j15 ook. Tussen e15 en f15 loopt dus geen verbinding. De illustratie maakt het duidelijk. De grijze lijntjes geven aan op welke manier de gaatjes onderling zijn verbonden. Dus: telkens vijf gaatjes in het middelste deel en alle gaatjes over de hele lengte aan de buitenkanten. Overigens zijn de twee buitenste rijen niet met elkaar verbonden, al hebben ze dezelfde kleurcode. In onze schakelingen gebruiken we altijd de blauw gemarkeerde rij voor GND en de rood gemarkeerde rij voor 3,3 volt. Om praktische redenen werken we in deze cursus niet met coördinaten. Nu je weet hoe de gaatjes met elkaar zijn verbonden, kun je immers zelf bepalen wat je waar in het breadboard prikt. Een vuistregel: zorg ervoor dat er nooit meer dan één pootje van een component in hetzelfde rijtje zit. Prik dus nooit een led in a15 en b15, maar in a15 en a16. In e15 en f15 kan weer wel, want daartussen zit geen verbinding.

©PXimport

04 Werken met de Arduino-ontwikkelomgeving

De ontwikkelomgeving voor Arduino is een zogeheten integrated development environment oftewel IDE. We schrijven de programma’s (binnen de IDE ‘schets’ genoemd) erin, testen ze met de ingebouwde debugger en uploaden ze ermee naar de ESP-module.

De programma’s bestaan ten minste uit de functies setup en loop (lus). Alles wat in setup staat, wordt eenmalig uitgevoerd. Hier bepalen we onder andere welke aansluitpinnen we gaan gebruiken en of dat ingangen of uitgangen worden. Binnen loop staan instructies voor bijvoorbeeld het uitlezen van sensoren en het aan- en uitzetten van een led. Alles in dit gedeelte van het programma wordt oneindig vaak herhaald. Instructies die je slechts af en toe wilt uitvoeren, zet je in een of meerdere functies die je zelf definieert. In de praktijk wordt setup() nog voorafgegaan door variabelen die door het hele programma gebruikt worden. We kunnen bijvoorbeeld een pinnummer toewijzen aan een led of een drukknop, zodat we in de code niet alle pinnummers en de daarop aangesloten componenten hoeven onthouden.

©PXimport

05 Controleren en uploaden

Nadat de benodigde code is ingevoerd of geladen, is de eerste stap het verifiëren ervan. Dat gaat met het knopje met de V links bovenin. De IDE test niet de werking van de code, maar controleert of de structuur klopt. Heb je bijvoorbeeld alles netjes gegroepeerd en worden onderdelen correct geopend en afgesloten? En is er niet twee keer een andere waarde toegekend aan een constante? Overigens wordt de code voor het uploaden automatisch nog gecontroleerd. Dat voorkomt dat je code naar de module uploadt waardoor die zou kunnen vastlopen. Fouten worden gemeld in het zwarte venster onderaan.

De laatste stap is het al genoemde uploaden van je code. Dat gebeurt met de knop met de pijl naar rechts en bestaat uit drie fases, die automatisch na elkaar worden uitgevoerd. De eerste fase is zoals gezegd het controleren van het programma. De tweede fase is het compileren, dat is het omzetten naar instructies die de processor begrijpt. Die instructies zijn voor mensen onhanteerbaar, vandaar deze vertaalslag. Dit betekent overigens dat je de code niet op een later moment van de ESP-module kunt downloaden om er verder aan te werken. Bewaar je programma’s dus altijd goed! De derde en laatste fase is het daadwerkelijk versturen van de gecompileerde versie van het programma naar de module.

©PXimport

Installeren van de ontwikkelomgeving

Voordat je aan de slag kunt met de NodeMCU, moet je eerst het stuurprogramma en de Arduino-ontwikkelomgeving installeren. Op Windows-pc’s, macOS-computers en Linux-systemen wordt de module automatisch herkend, nadat je de Arduino-ontwikkelomgeving (IDE) hebt geïnstalleerd. Doe dat dus altijd als eerste!

  1. Installeer Arduino IDE.
  2. Sluit de NodeMCU aan met de usb-kabel. Als bij deze stap de module onverhoopt toch niet wordt herkend, trek dan de usb-kabel van module los. Download vervolgens de driver voor Windows of voor macOS (let op: downloadt direct) en pak het zip-bestand uit. Installeer de driver (voer bij Windows Setup.exe uit) en sluit de module weer aan.
  3. Start de Arduino IDE en geef indien nodig de firewall toestemming.
  4. Klik op Bestand / Voorkeuren en voer op het tabblad Instellingen de url http://Arduino.esp8266.com/stable/package_esp8266com_index.json in bij Additionele Board Beheer URLs.
  5. Voeg de module toe aan de IDE via Hulpmiddelen / Board / Boardbeheer.
  6. Zoek op ‘esp’ en klik bij esp8266 by Community op Installeren.
  7. Selecteer het juiste bord: Hulpmiddelen / Board / NodeMCU 1.0 (ESP-12E Module).
  8. Selecteer tot slot de juiste poort (Hulpmiddelen / Poort, kies de COM-poort met het hoogste nummer).

Arduino en nu online verder

De twee projecten die u op de volgende pagina’s vindt, zijn afkomstig uit het pakket ‘Arduino en nu online verder’, van dezelfde makers als dit tijdschrift. Het pakket bestaat uit een instructieboek met daarin 14 projecten. Daarnaast vind je in het pakket de NodeMCU, een breadboard en alle componenten die je nodig hebt om alle projecten te bouwen. Je vindt het pakket zolang de voorraad strekt hier. Normaal gesproken kost dit pakket 64 euro, gebruik de code ARDUINOTOTAAL om 10 euro korting te krijgen!

Benodigde componenten

  • NodeMCU
  • Breadboard
  • 5 jumperdraden
  • 1 rode led
  • 1 oranje led
  • 1 gele led
  • 1 groene led
  • 4 weerstanden van 100 ohm

01 Schakeling bouwen

De schakeling voor het weeralarm is eenvoudig: we sluiten een groene, gele, oranje en rode led op de NodeMCU aan. Voor elke led gebruiken we een aparte aansluiting op het bordje: de pinnen D1, D2, D5 en D6, die we in de code instellen als digitale uitgang. Verbind voor elke led de kathode (het korte pootje) van de led via een weerstand van 100 ohm met GND om de stroom door de led te begrenzen. De anode (het lange pootje) van de rode led sluit je aan op D1, die van de oranje led op D2, die van de gele led op D5 en die van de groene led op D6. Heb je niet alle kleuren leds tot je beschikking, dan kun je uiteraard ook andere kleuren gebruiken. Maar dat is natuurlijk wel minder leuk en minder duidelijk.

02 Uploaden code

Je kunt de code voor dit project hier downloaden. Open de code in de ontwikkelomgeving. Stel als eerste de naam van je draadloze netwerk (in plaats van SSID) en het wachtwoord van je draadloze netwerk in (in plaats van WACHTWOORD). Vervolgens kun je de juiste regio instellen, zodat je het weeralarm van jouw regio ziet. Het oorspronkelijke weeralarm gold voor heel Nederland, maar sinds 2010 geeft het KNMI een weeralarm per provincie. Het KNMI heeft Nederland daarom ingedeeld in vijftien regio’s. Een regio per provincie plus de Waddeneilanden, de Waddenzee en het IJsselmeergebied. In de code die je voor dit project kunt downloaden, vind je de url “/weeralarm.php?regio=utrecht” terug. Je kunt utrecht vervangen door limburg, zeeland, noord-brabant, zuid-holland, noord-holland, gelderland, flevoland, overijssel, drenthe, groningen, friesland, ijsselmeergebied, waddenzee of waddeneilanden om de juiste regio te tonen. Upload de code vervolgens naar de NodeMCU en druk op het resetknopje. Na een korte tijd gaat het lampje branden van de weercode die momenteel in jouw regio actief is.

©PXimport

ESP8266 in een domoticasysteem

De Arduino-ontwikkelomgeving is niet de enige software die je in combinatie met de ESP8266 kunt gebruiken. In editie 12/2017 hebben we het NodeMCU-bordje gebruikt als basis om sensoren te verbinden met domoticasysteem Domoticz. Hiervoor gebruikten we de ESP Easy-firmware die een webinterface biedt waarmee je eenvoudig aangesloten sensoren als een bewegingsmelder, thermometer of luchtvochtigheidsmeter kunt uitlezen. Je kunt het artikel hier teruglezen.

©PXimport

Project Weermonitor

Benodigde componenten

  • NodeMCU
  • Breadboard
  • 4 jumperdraden
  • Oled-scherm

01 Schakeling bouwen

De schakeling voor de weermonitor is nog eenvoudiger dan die van het weeralarm. Het enige dat we doen is een eenvoudig beeldschermpje aansluiten. Dat kan met vier draadjes. VCC en GND van het schermpje verbinden we respectievelijk met 3.3V en GND op de ESP-module, SCL met D1 en SDA met D2. En daarmee is onze schakeling klaar. Er zijn verschillende schermpjes te koop die je kunt gebruiken in combinatie met ontwikkelbordjes. We gebruiken een I2C-OLED-schermpje met witte weergave met een afmeting van 0,96 inch met een resolutie van 128 x 64 pixels, voorzien van vier aansluitpinnen. Wil je een dergelijk schermpje los kopen, tik dan in bijvoorbeeld eBay of AliExpress de zoekterm “i2c oled 4 pin white Arduino”. Zo’n schermpje is voor zo’n 2,50 euro te vinden.

02 Oled-driver installeren

Om het oled-schermpje aan te sturen, hebben we een extra library nodig: esp8266-OLED. Download het zip-bestand, pak het uit en plaats de uitgepakte map in de map libraries van je map met Arduino-schetsen (Documents\Arduino onder je persoonlijke map in Windows). Maak eventueel de map libraries aan als die nog niet bestaat. Herstart daarna de Arduino IDE. We kunnen nu in onze code de nieuwe library gebruiken met de regel #include "OLED.h". Overigens voegen we ook een regel #include <Wire.h> toe, omdat de library OLED de library Wire nodig heeft voor de communicatie met het schermpje.

03 Code instellen

Je kunt de code voor dit project hier downloaden. Om de schets te laten werken vul je in de code de naam van je draadloze netwerk in plaats van SSID en je wachtwoord in plaats van WACHTWOORD. In de regel daarna kun je het nummer van het gewenste weerstation instellen. Ieder weerstation heeft een viercijferig nummer. Standaard staat hier 6260, de code voor het weerstation bij De Bilt. Je vindt alle weerstations hier. Upload de code vervolgens naar de NodeMCU. Herstart het bordje door op het resetknopje te drukken en de weergegevens verschijnen op het schermpje.

©PXimport

▼ Volgende artikel
Review Dreame L10s Ultra (2nd gen) – Goedkoper en beter dan voorganger
© Wesley Akkerman
Huis

Review Dreame L10s Ultra (2nd gen) – Goedkoper en beter dan voorganger

Tot onze verbazing zien we dat de Dreame L10s Ultra (2nd gen) een van de grootste nadelen van zijn voorganger zomaar wegneemt: deze nieuwe robotstofzuiger is namelijk honderden euro's goedkoper dan zijn voorganger ooit geweest was. Sterker nog: ook nu nog is eerste L10s Ultra duurder dan zijn opvolger. Tijd om te bekijken hoe de Gen 2 in de praktijk presteert.

Uitstekend
Conclusie

Dreame heeft met de Dreame L10s Ultra (2nd Gen) een fijne balans gevonden tussen een uitgebreide en functionele robotstofzuiger en een redelijke prijs. De maximaal 700 euro die je betaalt, is geen immens hoog bedrag voor de prestaties die je in huis haalt. Je krijgt bovendien toegang tot allerlei premium functies, zoals uitschuifbare dweilpads en de borstel. Je moet er wel rekening mee houden dat je soms de dweil zelf even moet schoonmaken om de prestaties op hoog niveau te houden, maar verder vinden we deze robotstofzuiger top.

Plus- en minpunten
  • Flinke zuigkracht
  • Dweilen gaat veel beter
  • Uitschuifbare onderdelen
  • Aanpassingsmogelijkheden
  • Overzichtelijke app
  • Navigatie gaat beter
  • Prijs-kwaliteitverhouding
  • Objectherkenning niet altijd accuraat
  • Vereist wat handmatig onderhoud
  • Geen warm water
  • Dweil schoonmaken duurt lang
  • Hardnekkige viezigheid kan achterblijven

De Dreame L10s Ultra (2nd Gen) heeft een adviesprijs van 699 euro, maar is nu al online verkrijgbaar voor minder. Als je de introductieprijs van de voorganger in het achterhoofd neemt (meer dan duizend euro) dan begrijp je dat we daar enigszins verrast over zijn. Dat model uit begin 2023 beviel, maar stelde ook teleur op een aantal vlakken. Zo botste het nog wel eens ergens tegenaan, had je nog wat handmatig onderhoud, werd het tapijt niet goed schoongemaakt, was de app onoverzichtelijk en zat je als het ware vast aan de schoonmaakmiddelen van Dreame.

Zijn opvolger doet een hoop dingen anders, terwijl de ervaring toch grotendeels hetzelfde blijft. Daarmee bedoelen we dat fabrikant Dreame een aantal negatieve aspecten aangepakt heeft, en de positieve eigenschappen heeft behouden. En dat zonder de prijs te verhogen. Ergens kon dat ook niet anders, gezien het bestaan van bijvoorbeeld de Dreame X40 Ultra en de aankomende X50 Ultra. Die nemen het stokje over van de meest dure Dreame-robots van dit moment, waardoor de vernieuwde L10s Ultra een lager prijskaartje hanteert.

©Wesley Akkerman

©Wesley Akkerman

Navigeren gaat goed, maar…

De robot en de basis hebben eenzelfde, stijlvol en praktisch ontwerp als andere Dreame-robotstofzuigers en zijn daardoor inmiddels heel herkenbaar. Voor- en bovenop tref je de middelen aan voor objectherkenning, zoals een camera en een laser (LiDAR). Hoewel dit model wel over objectherkenning beschikt, zit er geen AI-camera aan boord (zoals op de duurdere stofzuigers). Over het algemeen navigeert de robot goed door het huis en vermijdt hij verschillende soorten spullen die op de grond liggen en staan.

Waar deze stofzuiger een beetje moeite mee heeft, zijn smalle openingen. Het lijkt net alsof het apparaat een bepaalde route niet 'durft' te nemen uit angst om ergens vast te komen zitten. Daardoor kan het gebeuren dat specifieke plekjes niet meegenomen worden. De objectherkenning laat ook nog wel een iets te wensen over. Het kan zijn dat de robot over kabels heenrijdt en daardoor zichzelf vastrijdt (als het dikke kabels zijn) of iets opzuigt (als het dunne kabels zijn). Bij ons lieten de dweilpads daardoor ook een keer los; die bleven hangen achter een dikke stekkerkabel.

©Wesley Akkerman

Apart bakje voor reinigingsmiddel

Net als de voorganger kan ook de Dreame L10s Ultra (2nd Gen) zijn twee roterende dweilpads niet achterlaten op het basisstation. Daardoor kunnen dat soort dingen zoals in de alinea hierboven beschreven nog wel eens fout gaan. Als zoiets gebeurt, dan stopt de robot met werken totdat je hem geholpen hebt. Als je dan op dat moment niet thuis bent, dan heb je pech. Gezien de prijs hebben we daar minder moeite mee dan voorheen, maar het kan het gebruik van een robotstofzuiger wel in de weg zitten. Helemaal als het apparaat ergens onder het bed stilstaat, en je er dus moeilijk bij kunt

Gelukkig heeft het basisstation wel een waardevolle upgrade gekregen in de vorm van een apart zeepbakje. Naast een bak voor schoon en een bak voor vies water, heb je nu een aparte bak waar je vloerreiniger in kunt stoppen. Dreame raadt uiteraard zijn eigen schoonmaakmiddelen aan, maar niets staat je in de weg zelf een middel uit te kiezen.

Helaas biedt dit model ook geen droogfunctie aan voor de gebruikte dweilpads. Ze worden wel schoongemaakt op het station, maar het duurt even voordat ze helemaal schoon en droog zijn voor de volgende ronde.

©Wesley Akkerman

©Wesley Akkerman

Maakt veel beter schoon

In vergelijking met de vorige versie maakt de Dreame L10s Ultra (2nd Gen) veel beter schoon langs randen. Dan bedoelen we langs de muren en plinten, maar ook de rand van een vloerkleed. Het gevaarte op wielen maakt dan kleine, schuine bewegingen heen en weer en rijdt kort van voren naar achteren om precies tot aan de rand schoon te kunnen maken. Het slaat in dat proces weinig tot geen stukken vloer over. Wel kan deze robotstofzuiger in een enkel geval nog wel eens met de natte dweil op het vloerkleed komen. Maar dat is niets om je zorgen om te maken.

Qua zuigkracht is het systeem er eveneens flink op vooruitgegaan, van 5300 Pa naar 10.000 Pa. Daardoor blijft er vrijwel geen stof achter op de plekken waar de Dreame L10s Ultra (2nd Gen) komt. Het kan zijn dat hij nog wel eens wat achterlaat op een hoogpolig kleed. Ook de hoekjes in huis worden niet superschoon, ondanks de uitschuifbare borstel. Maar eerlijk is eerlijk: de robot doet het veel beter dan de Dreame L10s Ultra. De borstel, gemaakt van kunststof, snijdt eventuele haren (van bijvoorbeeld huisdieren of jezelf, als je lang haar hebt) niet voor je kapot; dus je hebt zelf nog wat onderhoud aan het af en toe haarvrij maken van de borstel.

Overzichtelijke app

Dweilen gaat het systeem nog even goed af. Vooral voor het dagelijkse of wekelijkse onderhoud is de Dreame L10s Ultra (2nd Gen) uitermate geschikt, aangezien hij genadeloos afrekent met oppervlakkige vlekken. Als je wat meer hardnekkige viezigheid aan de vloer laat plakken, weet de robot daar ook nog wel raad mee. Vettigheid en opgedroogde troep kunnen echter een uitdaging vormen – waarschijnlijk omdat de stofzuiger geen gebruik maakt van warm water. De dweilpads zijn overigens eveneens uitschuifbaar, wat het schoonmaken ten goede komt.

Via de overzichtelijke app kun je heel snel bepalen hoeveel water en zeep de Dreame L10s Ultra (2nd Gen) moet gebruiken. Wellicht helpt het om die hoeveelheid aan te passen, waardoor hardnekkige viezigheid ook zou kunnen verdwijnen – maar meer water en zeep is geen garantie voor succes. Verder bepaal je in de app de zuigkracht, in welke mate de stofzuiger zijn rondes doet (met ruime of minder ruime bochten) en zie je hoe het gesteld is met de verschillende onderdelen. Met die laatste functionaliteit kun je goed zien wanneer iets aan vervanging toe is of wanneer je ergens een lapje over moet halen.

©Wesley Akkerman

©Wesley Akkerman

Dreame L10s Ultra (2nd Gen) kopen?

Tot slot is het goed om te zien dat de accu ruim drie uur meegaat. Dat is deels afhankelijk van de instellingen die je zelf prefereert, maar dan nog is het een zeer nette score. Dit voorkomt dat de robot lange omwegen moet maken om tussentijds op te laden, waardoor het werk sneller gedaan kan worden. Verder moet je qua onderhoud dus rekening houden met vastgelopen haren, de oprit (die snel vies wordt) en zowel de water- als zeepbakken. Niet heel veel meer dus dan bij duurdere modellen; maar vooral dat vastgelopen haar kan irritant worden.

Onderaan de streep vinden we dat Dreame met de Dreame L10s Ultra (2nd Gen) een fijne balans heeft gevonden tussen een uitgebreide en functionele robotstofzuiger en een redelijke prijs. De maximaal 700 euro die je betaalt, is geen immens hoog bedrag voor de prestaties die je in huis haalt. Je krijgt bovendien toegang tot allerlei premium functies, zoals uitschuifbare dweilpads en de borstel. Je moet er wel rekening mee houden dat je soms de dweil zelf even moet schoonmaken om de prestaties op hoog niveau te houden, maar verder vinden we deze robotstofzuiger top.

▼ Volgende artikel
Maakt je blender lawaai? Zo los je het op
© InsideCreativeHouse
Huis

Maakt je blender lawaai? Zo los je het op

Een blender of een keukenmachine maakt geluid, dat is nu eenmaal zo. Er zitten bewegende onderdelen in, en er komt flink wat kracht bij kijken. Maar wat als je blender meer lawaai maakt dan zou moeten? Gelukkig kun je dat vaak zelf oplossen. Hier lees je hoe.

In dit artikel lees je:

  • Waarom je blender zo'n herrie maakt
  • Dat dat eigenlijk best logisch is
  • Dat je er (misschien) toch iets aan kunt doen

Lees ook: 9 dingen die je óók met je blender kunt maken

Waarom maakt mijn blender lawaai? 

De messen van een blender draaien doorgaans in de rondte met zo'n 20.000 toeren per minuut – bijna tien keer zo veel als de wielen van je auto als je lekker aan het cruisen bent. Geen wonder dus dat daar wat geluid bij komt kijken. 

Oudere blenders maken vaak meer lawaai dan nieuwe, en hoe langer je je blender hebt, des te meer geluid hij gaat maken, omdat de onderdelen verouderd raken. Daar is verder weinig aan te doen, behalve een nieuwe blender kopen. 

Stille blenders

Er zijn steeds meer stille blenders op de markt, al blijven ze natuurlijk altijd geluid maken. Doorgaans geldt dat hoe krachtiger het model, des te hoger de geluidsproductie. Denk dus goed na of je wel de krachtigste blender nodig hebt, of dat je het met een simpeler – en stiller! – model af kan. 

Fabrikanten doen er ook steeds meer aan om het geluid tegen te houden, bijvoorbeeld door een geluidsreductiesysteem en een slimme vorm van de messen en de glazen kan. Nieuwer is niet altijd beter, maar in dit geval vaak wel. 

©HP

Resonantie

Een van de hoofdredenen van een luide blender is de resonantie in de rest van je keuken. Probeer je blender maar eens op te tillen tijdens het blenden: dan hoor je meteen een stuk minder. Dat komt doordat het geluid doordreunt in het keukenblad, of zelfs in de muren waar de blender bij in de buurt staat. 

Zorg er dus voor dat de blender zo vrij mogelijk staat, niet tegen de muur en er ook niet vlakbij. Je kunt ook tijdelijk een handdoek of theedoek onder de blender leggen om het doordreunen te voorkomen, al moet je er wel voor zorgen dat het apparaat waterpas blijft staan. 

Veel blenders en keukenmachines hebben zuignappen, zodat ze wel op hun plek blijven staan, maar niet direct met het aanrechtblad in aanraking komen. Dat scheelt ook weer een slok op een smoothie! 

Conclusie

Je blender maakt nu eenmaal geluid, daar is weinig aan te doen. Je kunt het wel binnen de perken houden door te zorgen dat de blender goed waterpas staat en dat alle onderdelen goed schoon zijn. Zet hem niet tegen of in de buurt van de muur, en zet hem eventueel op een handdoek of theedoek om de ergste trillingen te voorkomen. En anders kun je natuurlijk altijd op zoek gaan naar een nieuwe, stille blender.