ID.nl logo
Huis

MBR of GPT: Alles over efficiënt partitioneren

Op een schijf installeer je een besturingssysteem en bewaar je data. Dat dient natuurlijk volgens strikte regels te verlopen. Zo moet je 'm eerst partitioneren en daar bestaan meerdere methodes voor, zoals MBR of GPT. We gaan hier in op de verschillen ervan.

Wanneer je in Windows een gloednieuwe schijf stopt, verschijnt die normaal gesproken niet zomaar in Windows Verkenner. Je hebt immers nog geen stationsletter toegekend en bovendien moet de schijf eerst worden geformatteerd. Anders gezegd, je dient de schijf van een bepaald bestandssysteem te voorzien, zoals exfat of ntfs. Zo’n bestandssysteem is weinig meer dan een set regels die het wegschrijven en inlezen van data op het opslagmedium regisseert. Echter, voordat je een schijf kunt formatteren, moet je die eerst partitioneren oftewel opdelen in logische volumes, ook als het je bedoeling is slechts één volume te gebruiken dat de hele schijf overspant.

Er zijn in principe twee partitieschema’s beschikbaar: mbr (master boot record) en gpt (guid partition table). Soms maakt die keuze niet zoveel uit, maar er zijn ook scenario’s waarin je eigenlijk gedwongen bent een bepaalde keuze te maken, wat dan vooral te maken heeft met het feit dat de partitiestructuur ook verband houdt met hoe een pc opstart. Het bootproces en de partitiestijl van een computer zijn dus twee verstrengelde aspecten die daarom ook beide aan bod komen in dit artikel.

Mbr-sector

We vertellen wat meer over mbr, het partitieschema dat al zo’n 35 jaar geleden werd bedacht. Linux kleeft er dan ook het archaïsche label ‘ms-dos’ op, maar toch kan mbr ook vandaag nog enig bestaansrecht claimen (zie de laatste paragraaf ‘De keuze’).

Mbr staat voor master boot record en wie iets van schijfstructuren weet, weet dat dit de eerste fysieke sector op een (opstartbare) schijf is. Het partitieschema is naar deze sector genoemd precies omdat die zo cruciaal is.

Zodra de bootstrapping-firmware uit het rom-bios in het geheugen is ingeladen, past die de uitvoerbare code uit de mbr-sector toe. Deze code controleert vervolgens de hoofdpartitietabel, die zich helemaal op het einde van deze sector bevindt – op de bootsector-handtekening 55AAh na. Deze tabel bevat namelijk de begin- en eindsector van de beschikbare schijfpartities. Een mbr-schijf kan in principe maximaal vier primaire partities bevatten, maar zodra je vanuit het Windows schijfbeheer een vierde partitie toevoegt, maakt Windows van deze partitie automatisch al een ‘uitgebreide partitie’ (extended partition), die zich dan verder laat opdelen in een aantal logische stations.

Tijdens de scan van de partitietabel wordt meteen gecontroleerd welke partitie als ‘actief’ werd gemarkeerd (met de bootsector-indicator 80h): de bootsector van het OS op die partitie handelt dan het verdere bootproces af.

Een uitstekende manier om deze mbr-sector zowel in hexcode als op geïnterpreteerde manier te bestuderen, is met de gratis tool Active@ Disk Editor. Je hoeft hier maar de juiste fysieke schijf te selecteren, linksboven het sjabloon Master Boot Record op te vragen en daar op het knopje met template fields coloring te klikken. De diverse componenten van de partitietabel, waaronder active partition flag, first sector, file system id enzovoort worden dan netjes leesbaar weergegeven.

©PXimport

Eén van de beperkingen van de mbr-partitiestijl is je inmiddels duidelijk geworden: een beperkt aantal (primaire) partities. Voor de doorsnee gebruiker is dat wellicht niet het grootste nadeel. Wellicht belangrijker is dat het aantal sectoren van een partitie in de partitietabel van een mbr-schijf als een 32bits-waarde wordt opgeslagen. Dat levert de volgende rekensom op: 2^32 x 512 bytes (de standaardgrootte van een fysieke sector) is circa 2,2 TB (of zo’n 2 TiB).

Schaf je je dus een schijf met een hogere capaciteit aan, dan wordt die begrensd op maximaal 2,2 TB en de rest van de schijf wordt ijskoud genegeerd. Nu zijn er ook wel schijven met meer dan 512 bytes per sector (zie kader ‘Meer dan 512 bytes per sector’), maar oudere besturingssystemen en heel wat schijftools zijn vast geprogrammeerd (‘hard coded’) om met sectorgroottes van 512 bytes om te gaan, wat tot compatibiliteitsproblemen kan leiden.

Een ander nadeel van een mbr-schijf is dat de mbr-sector zich steevast op de eerste fysieke sector van een opslagmedium bevindt. Raakt deze sector corrupt, dan kan de schijf – evenmin als de opgeslagen data – in zijn geheel niet meer (correct) worden benaderd.

En gpt dan?

Al deze restricties creëerden de noodzaak voor een nieuwe partitiestijl: gpt, wat staat voor guid partition table; guid op zijn beurt staat voor globally unique identifiers. De meeste besturingssystemen van de laatste pakweg acht jaar ondersteunen gpt. Willen Windows of macOS van een gpt-schijf kunnen opstarten, dan kan dat alleen maar in combinatie met (u)efi-firmware (zie paragraaf ‘Uefi’).

Wanneer je een gpt-schijf met een hex-editor bekijkt, dan zul je op de eerste fysieke sector alsnog een structuur herkennen die erg lijkt op die van een mbr-schijf. Dat komt omdat deze sector het zogenoemde protective mbr bevat. Dat is een bewuste strategie: door dit protective mbr zullen besturingssystemen en tools die niet met gpt overweg kunnen, aannemen dat de schijf van één grote, onbekende partitie is voorzien (want filesystem-ID EEh) en daardoor in principe geen verdere, ongewenste manipulaties toelaten.

Je begrijpt meteen wat we bedoelen als je een gpt-schijf met het programma Active@ Disk Editor bekijkt via het sjabloon Master Boot Record. Stel je Active@ Disk Editor in op het sjabloon GUID Partition Table, dan krijg je een goed inzicht in de typische opbouw van het gpt-partitieschema: eerst het Partition type GUID (zoals Microsoft Reserved Partition of Basic Data Partition), gevolgd door het Unique partition GUID.

©PXimport

Windows accepteert standaard tot 128 partities, maar dat is een beperking van het besturingssysteem zelf: het gpt-schema staat een onbeperkt aantal partities toe. De grootte van zo’n partitie is zo goed als onbeperkt: gaan we uit van fysieke sectoren van (slechts) 512 bytes, dan wordt maar liefst 9,4 ZB ondersteund (een zettabyte is 10^21).

Gpt biedt niet alleen een onbeperkt aantal partities van een nagenoeg onbeperkte capaciteit aan, er wordt tevens een kopie van de partitie- en bootdata bewaard. Wanneer de primaire gpt-header corrupt geraakt, wat dankzij uitgebreide cr-checks (cyclic redundancy) snel wordt gedetecteerd, dan kan die op basis van die kopie automatisch worden hersteld.

Gpt en uefi

We hebben het al een paar keer aangegeven: de ontwikkeling van gpt is nauw verweven met uefi oftewel Unified Extensible Firmware Interface. Zeg maar, de opvolger van het oude bios. Intussen is uefi aan versie 2.7A toe (augustus 2017): je vindt alle technische details over deze specificatie in deze lijvige pdf van circa 2500 pagina’s. Hoofdstuk 5 gaat heel specifiek over gpt.

Niet alleen maakt uefi voor de instellingen een prettige, grafische interface mogelijk (in een hoge schermresolutie en met ondersteuning voor aanraakschermen), ook naar veiligheid gaat de nodige aandacht uit, dankzij de ‘secure boot’-functie. Die controleert in een versleutelde database of een driver of app wel van een geldige handtekening is voorzien. Is dat niet het geval, dan weigert het systeem door te starten. Met uefi kunnen tevens firmware en drivers in 32- en zelfs in 64bit-modus opereren, zodat tijdens het opstarten meer geheugen kan worden aangesproken.

Het bootproces van een uefi-bios in combinatie met een gpt-schijf verloopt in een notendop als volgt. Initieel voert het uefi, net als bij het klassieke bios, enkele systeemconfiguratie-functies uit. Vervolgens wordt de guid-partitietabel (gpt) ingelezen, die zich in block 1 op de schijf bevindt, meteen achter block 0 met het protective mbr.

De efi-bootloader identificeert de efi-systeempartitie. Dat is een eenvoudige fat32-partitie (oudere Linux-distributies creëerden hiervoor zelfs nog een fat16-partitie) en bewaart in afzonderlijke mappen de bootloaders van de besturingssystemen die op de andere schijfpartities zijn geïnstalleerd. Voor een x64-besturingssysteem is dat bijvoorbeeld bootx64.efi, daarnaast komen bootia32.efi, bootia64.efi (Itanium), bootarm.efi en bootaa64.efi (ARM) voor. Zo’n bootloader initialiseert vervolgens een bootmanager, die uiteindelijk het eigenlijke besturingssysteem laat opstarten.

©PXimport

De keuze: mbr of gpt?

De belangrijkste kenmerken van beide partitieschema’s zijn inmiddels aan bod gekomen en het is overduidelijk dat gpt met uefi de meest toekomstgerichte oplossing biedt. Zo is Intel bijvoorbeeld voornemens tegen 2020 alleen nog zuivere uefi-systemen aan te bieden, zonder legacy bios-ondersteuning (uefi klasse 3).

Toch kunnen er nog scenario’s zijn waarin je mbr kunt overwegen. Werk je bijvoorbeeld met een ouder besturingssysteem als Windows XP 32 bit, dan heb je gewoon geen keuze: dit besturingssysteem ondersteunt gpt niet, niet als systeempartitie en zelfs niet als datapartitie. Windows XP 64 bit ondersteunt gpt uitsluitend als datapartitie en dus niet voor de systeempartitie.

Alle 64bit-Windows-versies vanaf Vista kunnen wél opstarten vanaf een gpt-systeempartitie, althans met een uefi-bios. Beschik je dus over een oudere pc met een klassiek bios waarop je een 64bit-Windows-versie wilt draaien, dan zit er weinig anders op dan voor mbr te kiezen.

▼ Volgende artikel
Wifi wel snel op je telefoon, maar traag op je laptop? Hier ligt dat aan!
© A Stockphoto
Huis

Wifi wel snel op je telefoon, maar traag op je laptop? Hier ligt dat aan!

Je zit op de bank en streamt probleemloos een 4K-video op je telefoon, maar zodra je je laptop openklapt om een webpagina te laden, lijkt het alsof de verbinding vastloopt. Ligt het aan de router of aan je computer? In dit artikel leggen we uit waarom wifi-snelheden zo sterk kunnen verschillen per apparaat en wat je eraan kunt doen.

Je betaalt voor een snelle internetverbinding, dus is de verwachting dat elk apparaat in huis die snelheid ook daadwerkelijk haalt. Toch voelt het surfen op je computer soms stroperig aan, terwijl je smartphone ernaast nergens last van heeft. Vaak wordt er direct naar de internetprovider gewezen, maar het probleem zit meestal in de apparatuur zelf. Het verschil in hardware, leeftijd en software tussen mobiele apparaten en computers is namelijk groter dan je denkt. Na het lezen van dit stuk weet je precies waar die vertraging vandaan komt.

Generatiekloof: waarom je laptop vaak achterloopt

Het snelheidsverschil tussen je telefoon en je computer komt vaak neer op een simpele generatiekloof. We vervangen onze telefoons gemiddeld elke twee tot drie jaar, waardoor ze vaak uitgerust zijn met de nieuwste wifi-chips (zoals wifi 6 of 6E). Een laptop gaat vaak veel langer mee, soms wel vijf tot zeven jaar. Hierdoor probeert een verouderde netwerkkaart in je laptop te communiceren met een moderne router, wat resulteert in een lagere maximumsnelheid.

Daarnaast speelt de manier waarop data wordt verwerkt een grote rol. Een telefoon is geoptimaliseerd voor directe consumptie: apps op de achtergrond worden gepauzeerd om de app die je nú gebruikt voorrang te geven. Een computer werkt anders. Terwijl jij probeert te surfen, kan Windows of macOS op de achtergrond bezig zijn met zware updates, het synchroniseren van clouddiensten of het maken van back-ups. Je laptop snoept dus al bandbreedte weg zonder dat jij het doorhebt, waardoor er voor je browser minder overblijft.

Wanneer je laptop de strijd wél wint

De laptop wint het van de telefoon wanneer de omstandigheden optimaal zijn voor stabiliteit in plaats van pure mobiliteit. Als je beschikt over een moderne laptop met een recente netwerkkaart en je bevindt je in dezelfde ruimte als de router, kan de laptop vaak stabieler grote bestanden binnenhalen.

Dat geldt vooral als je laptop verbonden is met de 5GHz-frequentieband. Deze frequentie is veel sneller dan de oude 2.4GHz-band, maar heeft een korter bereik. Als je dicht bij het toegangspunt zit, profiteert je laptop van zijn krachtigere processor om complexe webpagina's sneller op te bouwen dan een telefoon dat kan, mits de verbinding zelf niet de bottleneck is.

Waarom je telefoon soepeler aanvoelt

Het verschil wordt pijnlijk duidelijk zodra je verder van de wifi-bron af gaat zitten, bijvoorbeeld op zolder of in de tuin. Smartphones zijn vaak agressiever geprogrammeerd om het sterkste signaal te pakken of snel tussen frequenties te schakelen. Veel laptops blijven daarentegen te lang plakken op een zwak 5GHz-signaal of vallen onnodig terug op de trage en vaak overvolle 2.4GHz-band (het zogeheten 'sticky client'-probleem).

Daarnaast hebben smartphones een trucje dat laptops helaas moeten missen: wifi-assist (of een vergelijkbare term). Als de wifi even hapert, gebruikt de telefoon ongemerkt een beetje 4G- of 5G-data om de stroom stabiel te houden. Je laptop heeft die optie meestal niet en laat direct een laadicoontje zien. Hierdoor voelt de telefoon sneller aan, terwijl hij eigenlijk een beetje vals speelt door mobiele data bij te schakelen.

Harde grenzen: wanneer traagheid onvermijdelijk is

Er zijn situaties waarin je laptop de strijd sowieso verliest, ongeacht hoe dicht je bij de router zit. Dit zijn de harde grenzen:

  • Verouderde standaarden: Als je laptop alleen wifi 4 (802.11n) ondersteunt, zul je nooit de snelheden halen van een telefoon met wifi 6 (802.11ax). De hardware kan het simpelweg niet aan.

  • Actieve VPN-verbinding: Veel werklaptops hebben een actieve VPN-verbinding voor beveiliging. Dit vertraagt de internetsnelheid aanzienlijk vergeleken met een 'open' telefoonverbinding.

  • De 2,4GHz-valkuil: In dichtbevolkte wijken is de 2,4GHz-band zo vervuild door signalen van de buren, dat een laptop die hierop vastzit nauwelijks vooruitkomt.

  • Batterijbesparing: Als je laptop niet aan de lader ligt en in Eco-modus staat, wordt de stroom naar de wifi-kaart vaak geknepen, wat direct ten koste gaat van het bereik en de snelheid.

Zo check je of jouw hardware het probleem is

Om te bepalen of je laptop de boosdoener is, moet je eerst kijken naar de verbinding. Klik op het wifi-icoon op je laptop en controleer of je verbonden bent met een 5GHz-netwerk (vaak te zien bij Eigenschappen of netwerkinformatie). Is dat niet het geval en sta je wel dicht bij de router? Dan is je netwerkkaart waarschijnlijk verouderd of staan de instellingen niet goed.

Kijk ook eens kritisch naar je gebruik. Heb je toevallig nog applicaties openstaan zoals Steam, OneDrive of Dropbox? Deze programma's kunnen de verbinding volledig dichttrekken. Op een telefoon gebeurt dit zelden automatisch op de achtergrond. Als je laptop ouder is dan vijf jaar, kan een simpele upgrade met een moderne wifi-usb-dongle het probleem vaak al verhelpen, zonder dat je een hele nieuwe computer hoeft aan te schaffen.

Kortom: leeftijd en software maken het verschil

Dat je telefoon sneller is op wifi dan je laptop, komt meestal doordat telefoons nieuwere netwerkchips hebben en slimmer omgaan met datastromen. Laptops hebben vaak last van zware achtergrondprocessen of blijven hangen op een tragere frequentieband. Daarnaast schakelen telefoons bij zwak wifi soms ongemerkt over op 4G/5G, wat de ervaring vloeiender maakt. Controleer of je laptop op de 5GHz-band zit en sluit zware achtergrondprogramma's af om snelheid te winnen.

▼ Volgende artikel
Tomodachi Life: Waar Dromen Uitkomen arriveert op 16 april
Huis

Tomodachi Life: Waar Dromen Uitkomen arriveert op 16 april

Tomodachi Life: Waar Dromen Uitkomen komt op 16 april uit voor Nintendo Switch.

Dat heeft Nintendo vanmiddag aangekondigd in een speciale Direct-uitzending die om de game draait. Ondanks dat de game voor de eerste Switch verschijnt, zal hij via backwards compatibility ook speelbaar zijn op Nintendo Switch 2.

In de Tomodachi Life-games van Nintendo kunnen spelers zelf Mii-personages creëren en bijvoorbeeld baseren op het uiterlijk van henzelf, vrienden en familie of beroemdheden. Deze Mii's leiden vervolgens hun eigen leven op een eiland, wat allerlei gekke en hilarische situaties oplevert. Spelers kunnen zelf ook invloed uitoefenen op deze verschillende situaties.

Watch on YouTube

Over Tomodachi Life: Waar Dromen Uitkomen

In de Direct-uitzending werd meer informatie gegeven over het aankomende Tomodachi Life: Waar Dromen Uitkomen. Zo is duidelijk dat spelers hun Mii-personages unieke persoonlijkheden, gewoontes en woningen kunnen geven. Spelers kunnen tijdens de game zien waar de personages aan denken, en ze helpen bij problemen. De tijd in de game verstrijkt daarbij net zo snel als in de echte wereld, wat het de moeite waard maakt om het spel op verschillende momenten op te starten.

Het is daarbij mogelijk om de verschillende Mii-personages kennis met elkaar te laten maken, om te zien wat er vervolgens gebeurd. Personages kunnen bijvoorbeeld praten over hun favoriete eten en filmgenres. Het is daarnaast mogelijk om acht Mii-personages bij elkaar in een huis te laten wonen, wat weer unieke reacties van de personages veroorzaakt.

Op het eiland waar de game zich afspeelt kunnen spelers de personages winkels te laten bezoeken. Bijvoorbeeld een supermarkt waar allerlei etenswaren worden verkocht, of de mogelijkheid om kleding en kostuums te kopen. In een speciale marktkraam worden redelijk geprijsde artikelen meerdere malen per dag ververst.

Ook is er een ontwerpatelier, waar spelers verschillende voorwerpen kunnen maken, waaronder kledingstukken, versiering voor huizen en zelfs huisdieren. Het eiland kan sowieso naar eigen smaak worden ingedeeld, met bankjes, bomen, planten en meer.

Nieuw op ID: het complete plaatje

Misschien valt het je op dat er vanaf nu ook berichten over games, films en series op onze site verschijnen. Dat is een bewuste stap. Wij geloven dat technologie niet stopt bij hardware; het gaat uiteindelijk om wat je ermee beleeft. Daarom combineren we onze expertise in tech nu met het laatste nieuws over entertainment. Dat doen we met de gezichten die mensen kennen van Power Unlimited, dé experts op het gebied van gaming en streaming. Zo helpen we je niet alleen aan de beste tv, smartphone of laptop, maar vertellen we je ook direct wat je erop moet kijken of spelen. Je vindt hier dus voortaan de ideale mix van hardware én content.