ID.nl logo
Wat is multithreading en wat heb je er aan?
© Reshift Digital
Huis

Wat is multithreading en wat heb je er aan?

De afgelopen jaren is het aantal cores in mainstream desktopplatformen flink toegenomen. Er is nu zelfs een 16core-processor te krijgen. Maar wat is multithreading nou precies? En wat zijn de technische beperkingen en uitdagingen die hiermee gepaard gaan?

Toen in de jaren 2000 bleek dat de kloksnelheden van processors niet onbeperkt verhoogd konden worden, werd de keuze gemaakt om in te zetten op meer processorcores. Een systeem met meerdere cores was niet nieuw. Servers hadden al langere tijd multisocket-moederborden, met ondersteuning voor meerdere processors. Doordat nu meerdere cores werden geïntegreerd in een enkele zogenoemde ‘die’, werd multithreading een stuk toegankelijker.

Het daadwerkelijk goed benutten van die extra cores loopt wel achter op de technische verbeteringen. Sommige programma’s zijn goed geoptimaliseerd voor multithreading en kunnen 16 cores benutten, maar dit is lang niet altijd het geval. Dit heeft meerdere oorzaken, waar we nu naar gaan kijken.

Wat zijn threads?

Allereerst is het belangrijk om onderscheid te maken tussen processen en threads. Elk proces beschikt over zijn eigen geheugensegment en opereert in principe compleet onafhankelijk van andere processen. Het besturingssysteem voorkomt elke poging van een proces om bij het geheugen van een ander proces te komen. Daarentegen zijn threads niet volledig onafhankelijk. Ze kunnen bij het geheugen van andere threads komen, maar het is wel een andere ‘draad’ van executie, die tegelijkertijd met de andere threads wordt uitgevoerd. Een proces kan meerdere threads hebben, maar een thread kan zelf geen eigen processen hebben.

Er zijn twee soorten threads: software-threads en hardware-threads. Het aantal software-threads wordt bepaald door het totale aantal ‘draden’. Dit kan veranderen, afhankelijk van het opstarten en afsluiten van programma’s. Wanneer we in dit artikel het woord thread zonder kwalificatie gebruiken, bedoelen we software-threads.

Het aantal hardware-threads ligt juist vast, en is afhankelijk van het aantal cores en of er Simultaneous Multithreading (SMT) wordt ondersteund. Een 8core-processor met SMT heeft bijvoorbeeld 16 threads.

Ideaal is een situatie waarbij er evenveel software-threads zijn als hardware-threads. Wanneer er minder software-threads zijn, wordt de hardware niet efficiënt benut. Dat spreekt voor zich, maar ook een te groot aantal software-threads kan negatief uitpakken voor de prestaties.

Threads versus processen

Zowel processen als threads kunnen gebruikt worden voor ‘concurrency’, een term die iets breder is dan multithreading, omdat het alles omvat waarbij meerdere taken tegelijkertijd worden uitgevoerd. Het voordeel van het gebruik van processen is dat het crashen van een proces niet leidt tot het beëindigen van het programma: Google gebruikt voor zijn Chrome-browser bijvoorbeeld meerdere processen om de stabiliteit te verbeteren.

Het grote nadeel is dat het opstarten van een proces veel trager is dan het starten van een thread. Dit is vooral het geval op Windows, waarbij alle bronnen van tevoren toegekend moeten worden. Linux heeft een andere implementatie, waarbij een proces zichzelf kan klonen. Deze kloon of ‘fork’ heeft toegang tot alle bronnen van het eerste proces. Door copy-on-write krijgt het tweede proces pas zijn eigen kopie van delen van het geheugen, als het ernaar probeert te schrijven. Dit zorgt voor veel efficiëntere multiprocessing dan op Windows, waarbij het zoals gezegd voor het creëren van een proces noodzakelijk is dat alle bronnen van tevoren toegewezen worden.

©PXimport

Aangezien threads dezelfde bronnen delen, is het makkelijker voor threads om te communiceren dan voor processen (maar zoals in de paragraaf ‘Gezamenlijk geheugengebruik’ wordt uitgelegd, is dit ook erg gevaarlijk). Inter-process communication is een kunst op zich en dat gaat vaak via omwegen die veel zwaarder en trager zijn dan wat voor threads mogelijk is. Niettemin is er een plaats voor multiprocessing en dit is vaak ook een stuk eenvoudiger te programmeren dan multithreading.

Sommige taken zijn relatief eenvoudig multithreaded te maken, dit geldt bijvoorbeeld voor 3D-rendering en encoderen onder. Andere programma’s, zoals computer assisted design (CAD), zijn dan weer noodgedwongen singlethreaded. Dit is niet willekeurig, maar hangt af van hoe geschikt een bepaald programma is voor multithreading.

Rekenen

Het belangrijkste punt is dat er zo min mogelijk afhankelijkheidsrelaties moeten zijn. In wiskundige termen moet de taak associatief zijn, wat inhoudt dat het niet uitmaakt in welke volgorde hij wordt uitgevoerd. De plusoperatie is bijvoorbeeld associatief, waardoor de volgende simpele berekening prima in een andere volgorde kan worden uitgevoerd: x = 4 + 2 + 5 + 6.

We zouden deze som met of zonder afhankelijkheid kunnen uitvoeren. In het eerste geval berekenen we eerst 4 + 2, vervolgens 6 + 5 en uiteindelijk 11 + 6. Tijdens elke stap hebben we de uitkomst van de vorige berekening nodig. Stel dat we dit anders doen, dat we eerst 4 + 2 berekenen, dan 5 + 6 en tot slot de uitkomst hiervan bij elkaar optellen. Het aantal benodigde berekeningen verandert niet, dat blijft drie, maar de afhankelijkheid is verminderd.

Voor de mens wordt het er niet makkelijker op, maar een cpu zou de eerste twee berekeningen tegelijkertijd kunnen uitvoeren, waardoor er (uitgaande van een enkele klokcyclus voor de add-instructie) maar twee klokcycli nodig zijn en niet drie. Dit voorbeeld dient ter illustratie, want als deze getallen worden ingevoerd als ‘literals’ (vaste getallen), weet een beetje compiler wel het juiste antwoord direct in te voeren.

©PXimport

Heel spannend klinkt dit misschien niet, maar de vorige paragraaf verklaart waarom bijvoorbeeld het encoderen van video zo goed als perfect multithreaded is. Het beeld wordt opgedeeld in bijvoorbeeld zestien verschillende delen. Deze hebben ieder niets te maken met de andere delen, waardoor processorthreads er onafhankelijk aan kunnen werken. Uiteindelijk wordt het beeld samengevoegd, iets wat wel afhankelijk is van de eerdere berekeningen, maar triviaal is daarmee vergeleken.

Het verklaart ook waarom sommige andere taken heel slecht geschikt zijn voor multithreaded, zoals CAD en sommige Photoshop-filters. Deze hebben een zeer hoge mate van afhankelijkheid van andere delen van een foto, waardoor het niet mogelijk is om de taak op te splitsen in verschillende delen. Het gevolg is dat er minder threads aan kunnen werken.

In hoeverre multithreading de prestaties kan verbeteren, kan uitgerekend worden op basis van het deel van het werk dat parallel te maken is. Dit heet de wet van Amdahl en luidt als volgt: 1 / (1 – p), waarbij p staat voor het deel dat te parallelliseren is. Een programma waarbij de helft geschikt is voor multithreading, kan met een onbeperkt aantal cores maximaal twee keer zo snel worden. Dit is omdat het voor de helft van de tijd niet uitmaakt hoeveel cores er zijn.

Thread-safety en cache coherence

Drie termen die vaak worden gebruikt in combinatie met multithreading zijn thread-safe, thread-unsafe en thread-compatible. Dit gaat altijd over delen van een bepaald programma, oftewel functies. Allereerst heb je functies die thread-unsafe zijn. Deze kunnen überhaupt niet vanuit meerdere threads gebruikt worden. Dit is vrijwel altijd het resultaat van slecht programmeerwerk. Het standaardniveau is thread-compatible. Dit betekent dat de functie geen problemen oplevert, zolang er niets naar het geheugen wordt geschreven.

Zonder wijzigingen is er ook geen synchronisatie noodzakelijk. Het hoogste niveau is thread-safe. Dit betekent dat er data wordt gewijzigd, maar dit levert geen problemen op dankzij de synchronisatiemechanismes die we verderop bespreken.

©PXimport

Iets wat multithreading heel ingewikkeld maakt, is het probleem van ‘cache coherency’, een van de fundamentele uitdagingen in de computerwetenschap. Dit gaat over de vraag hoe je ervoor zorgt dat het geheugen consistent is wanneer er meerdere programma’s zijn die hetzelfde geheugen lezen en ernaar schrijven. Het grote probleem is dat deze lees- en schrijfoperaties via de cache gebeuren, omdat deze vele malen sneller is dan het werkgeheugen. Aangezien iedere core zijn eigen cache heeft, kan het gebeuren dat de waarde hier verschilt met die in het geheugen, doordat een andere thread het geheugen heeft veranderd, of doordat de huidige thread de cache heeft aangepast en deze nog niet is bijgewerkt in het geheugen.

Gezamenlijk geheugengebruik

Op zich is het geen enkel probleem als er meerdere threads gebruik willen maken van hetzelfde geheugen, zolang er maar geen enkele thread is die naar het geheugen schrijft. Als er meerdere threads naar het geheugen schrijven, is dat zeker een probleem. Dit maakt multithreading onmiddellijk een stuk moeilijker … en gevaarlijker! Om een heel simpel voorbeeld te geven: stel dat er een programma is met een functie die enkel een teller verhoogt. Het volgende is een voorbeeld in C++:

void incr(){
static int i = 0;
++i; }

We willen dit programma graag multithreaded maken. Simpeler dan dit kan niet, dus je zou verwachten dat dit geen problemen zou kunnen geven. Helaas niet. Er gaat veel meer gepaard met het verhogen van een teller dan je zou verwachten. Dit heet een RMW- operatie: read-modify-write. Het systeem moet eerst uitlezen wat de teller is (bijvoorbeeld door het te kopiëren naar een processorregister), vervolgens dit aantal verhogen met 1 en dit daarna terugschrijven naar de geheugenlocatie. Vooral deze laatste stap gaat gepaard met een aanzienlijke vertraging. Wat als de teller op 2 staat en de functie wordt twee keer tegelijkertijd aangeroepen? In beide gevallen zal de functie 2 lezen en zal de verhoging daarom uitkomen op 3, terwijl het eigenlijk 4 zou moeten zijn.

Het kan nog erger. Het uitlezen ging het vorige voorbeeld immers nog netjes, ondanks het gelijktijdig beschrijven van exact hetzelfde geheugen. We krijgen óf de waarde van voor de laatste verandering óf die van daarna, maar niet iets anders. Dit is lang niet op alle processorarchitecturen zo (maar wel op x86). In een ander geval kan de tweede functie een willekeurig getal uitlezen, bijvoorbeeld 284 of -90. Dit getal wordt dan netjes vermeerderd met 1, maar het komt helaas op iets anders uit dan de 4 die we willen hebben. Het resultaat is ongedefinieerd gedrag, wat inhoudt dat er geen enkele garantie is voor wat de uitkomst is.

Een race-conditie is wanneer de uitkomst van een programma afhangt van de volgorde waarin of de tijd waarop bepaalde code toevallig wordt uitgevoerd. Een programma hoort deterministisch en daarmee voorspelbaar te zijn, dus een goed programma hoort vrij te zijn van race-condities. Wat we willen, is dat de tweede oproep van de functie netjes wacht totdat de vorige klaar is, en dat hij daarom ook de nieuwe waarde leest. Hiervoor is synchronisatie noodzakelijk, iets wat we hierna bespreken.

©PXimport

Mutex en Atomics

Een veelgebruikt synchronisatiemechanisme is een ‘mutual exclusion object’ (mutex). Een mutex is vergelijkbaar met een ‘stoplicht’, dat voorkomt dat meerdere threads tegelijkertijd bij een bepaald deel van het geheugen kunnen komen. Een thread die toegang wil, zal eerst een vrije mutex op ‘slot’ zetten. Elke volgende thread die bij de mutex komt, zal geblokkeerd worden totdat de mutex weer vrijgegeven wordt door de eerste thread.

Mutexen hebben alleen wel de nodige problemen. Zo zijn ze relatief sloom en gevaarlijker is het probleem van potentiële deadlocks. Dat is wanneer verschillende delen van een programma meerdere van dezelfde mutexen nodig hebben, dan kan het gebeuren dat een benodigde mutex nooit vrijgegeven wordt en dat het programma blijft hangen. Deze kans is nog aanzienlijker wanneer met andere mutexen beschermde delen van het programma afhankelijk zijn van elkaar. Als deze dan tegelijkertijd gedraaid worden, dan wacht de ene thread op een vrije mutex totdat hij zijn eigen mutex vrijgeeft, terwijl de eerste mutex niet vrijkomt totdat de eerste thread klaar is met zijn werk. Er moet dus op een goed doordachte manier geprogrammeerd worden. Een simpel voorbeeld in C++:

void incr(){
static mutex mut1;
static int i = 0;
lock_guard<mutex> lck(mut1); </mutex>
++i;
} // mutex wordt automatisch vrijgegeven

In sommige gevallen kan het lonen om in plaats van een gewone mutex een ‘reader writer’-mutex te gebruiken. Deze kan of aan één thread schrijftoestemming geven of aan een onbeperkt aantal threads leesbevoegdheid. Aangezien alleen veranderend geheugen race-condities oplevert, kan dit de prestaties verbeteren als er maar weinig naar het beschermde geheugen wordt geschreven.

Concurrency-problemen kunnen in sommige gevallen ook opgelost worden door het gebruiken van variabelen die geen tussenstaat laten zien. Deze heten ‘atomics’ in C en C++, en ‘volatile’ variabelen (vluchtige variabelen) in Java en C#. Als we een atomische variabele gebruiken voor ons eerdere scenario, dan begint de tweede operatie pas wanneer de eerste klaar is. Dan heb je niet het probleem dat een van de vermeerderingen potentieel verloren gaan.

Volgorde

Simpele atomics lossen niet alle problemen op. Atomische variabelen kunnen ook garanderen dat bepaalde code in een voorgeschreven volgorde wordt uitgevoerd. Elke atomische operatie heeft een bepaalde ‘memory barrier’, ook wel ‘memory order’ genoemd. Deze barrière bestaat uit een ‘acquire’-laadoperatie die wordt gekoppeld aan ‘release’-opslagoperatie. Tussen deze twee operaties wordt er een zogenoemde ‘çritical section’ gecreëerd. Instructies binnen dit deel is sterk beperkt in herordening: ze mogen niet buiten de sectie worden gebracht door de compiler of de processor. Dit garandeert dat alle instructies binnen (en voor) dit deel zijn uitgevoerd wanneer er een ‘acquire’ wordt uitgevoerd. Ook wordt er gegarandeerd dat de laatste waarde van de atomische variabele is geschreven naar het geheugen en de caches, zodra de acquire is uitgevoerd.

Als er toegang wordt gevraagd voordat het systeem hier klaar mee is, wordt toegang tot de betrokken delen van het geheugen geblokkeerd. Dit om te voorkomen dat er iets gebeurt met de tussenstaat van de variabele. Hier zijn speciale machine-instructies voor, die het werk efficiënter kunnen verrichten dan een mutex. Het volgende voorbeeld laat zien hoe dat werkt.

void incr(){
static atomic<int> i(0); </int>
++i; }

In de praktijk komt dit erop neer dat een ‘release’ informatie publiceert die een ‘acquire’ kan opvragen (bij een RMW-operatie is er een gecombineerde acquire en release). Waar zou dit nuttig voor kunnen zijn? Veel systemen moeten van een valide staat naar een andere valide staat gebracht worden, zonder dat er het een en ander kan gebeuren in de tussenstaat. Om maar een voorbeeld te geven: bij het uitvoeren van een banktransactie is het een goed idee om zowel de vermindering als de vermeerdering op de respectieve rekeningen als een alles-of-niets-transactie uit te voeren.

Het voordeel van atomics ten opzichte van een mutex, is dat ze sneller zijn en dat deadlocks niet tot de mogelijkheden behoren. Het nadeel is dat ze nog altijd substantieel langzamer zijn dan gewone variabelen, vooral wanneer het gaat om schrijfacties. Veranderingen moet immers verspreid worden naar niet alleen de verschillende caches, maar ook naar het werkgeheugen. In de tussentijd mag er geen enkele andere thread gebruikmaken van de oude waarde. Een verder nadeel is dat niet alles met atomische variabelen geïmplementeerd kan worden. Programma’s die hier wel gebruik van maken, heten ‘lockfree’, omdat ze geen gebruikmaken van een mutex-slot.

▼ Volgende artikel
Waar voor je geld: vijf 65-inch televisies voor ieder budget
Huis

Waar voor je geld: vijf 65-inch televisies voor ieder budget

In de rubriek Waar voor je geld gaan we op zoek naar leuke aanbiedingen of producten met bijzondere eigenschappen. Dit keer hebben we een selectie van vijf 65-inch televisies voor je, met uiteenlopende prijzen van zo'n 800 tot 1.600 euro, voor ieder budget dus.

LG OLED65C46LA

Met de LG OLED65C46LA haal jij een televisie in huis die een groot 65‑inch scherm combineert met de uitstekende contrasten van OLED. Elke pixel kan individueel oplichten of uitstaan, zodat zwarte beelden echt donker worden en er geen achtergrondverlichting nodig is. In de praktijk levert dat scherp beeld en een prettige kijkhoek op, waardoor je zelfs vanuit de hoek van je woonkamer naar films of series kunt kijken. De 4K‑resolutie (3.840 × 2.160 pixels) zorgt ervoor dat ondertitels en fijne details bij natuurdocumentaires of sportwedstrijden scherp blijven.

Dankzij het 120 Hz‑paneel worden snelle bewegingen vloeiend weergegeven, wat vooral bij games of sport handig is. De tv draait op LG’s WebOS‑systeem; daarmee kun je eenvoudig navigeren tussen apps zoals Netflix, Disney+ en YouTube. Vier HDMI 2.1‑poorten bieden ruimte voor gameconsoles en randapparatuur. Ook beschikt de tv over eARC voor het doorgeven van geluid naar een externe soundbar.

De optimale kijkafstand

De juiste kijkafstand voor je televisie is belangrijk voor optimaal kijkcomfort en beeldkwaliteit. Een algemene vuistregel is dat je afstand ongeveer 2–3 keer de schermdiagonaal moet zijn. Zit je te dicht, dan worden scherpe details lastig te zien; te ver weg en je mist details.

Voor een 65-inch tv geldt dat de optimale kijkafstand dan ongeveer vier meter is. Het is dus niet heel logisch om te kiezen voor een grote televisie als de afstand vanaf de bank tot de plek waar de televisie staat, minder dan vier meter is.

Je kunt in zo'n geval ook kiezen voor een 43-inch of 55-inch televisie.

Samsung QE65Q73D

Als je graag een groot scherm wilt met levendige kleuren, dan is de Samsung QE65Q73D een model om naar te kijken. Deze QLED‑televisie heeft eveneens een schermdiagonaal van 165 centimeter, maar maakt gebruik van een Quantum‑Dot laag om licht om te zetten in een breed kleurvolume. Hierdoor zijn kleuren uit films, series of games aanwezig zonder dat je zelf iets hoeft bij te stellen. Met een verversingssnelheid van 100 Hz worden bewegingen soepel weergegeven en dankzij de Motion Xcelerator 120 Hz‑functie profiteer je bij gameconsoles die hogere verversingsfrequenties ondersteunen.

De 4K AI‑upscaler in Samsungs Quantum‑processor schaalt beelden op tot de volledige Ultra‑HD‑resolutie, zodat je oudere HD‑films scherper ervaart. Het besturingssysteem Tizen biedt toegang tot apps en streamingdiensten en je kunt via SmartThings andere

slimme apparaten bedienen. Er zijn vier HDMI‑poorten en wifi aan boord en energieklasse E geeft aan dat het verbruik gemiddeld is voor een groot QLED‑scherm.

LG OLED65G45LW

De LG OLED65G45LW uit 2024 is een zogeheten Gallery‑model, bedoeld om strak tegen de muur te hangen. Het scherm is slechts enkele centimeters dik, zodat het toestel in je interieur opgaat. Binnenin zit een OLED evo‑paneel met 4K‑resolutie, waardoor elk beeldpunt individueel wordt aangestuurd en kleurenkrachtig zijn. De televisie ondersteunt een verversingssnelheid van 120 Hz en biedt daardoor vloeiende beelden bij sport of snel bewegende films.

Via vier HDMI‑2.1‑aansluitingen kun je gameconsoles aansluiten en profiteren van variabele refresh rates. WebOS 8 vormt de basis voor het smart‑platform; hiermee navigeer je door apps en diensten en kun je via spraakassistenten als Google Assistant of Amazon Alexa de tv bedienen. De set wordt geleverd met een wandbeugel, zodat hij strak tegen de muur bevestigd kan worden.

LG OLED65B42LA

In de B‑serie van LG vind je de OLED65B42LA, een toestel dat in 2024 op de markt kwam. Deze televisie biedt de voordelen van OLED – elk pixel kan apart aan of uit – maar in een iets betaalbaarder segment dan de G‑ of C‑series. Het 65‑inch scherm combineert een 4K‑resolutie met een verversingssnelheid van 120 Hz. Hierdoor zijn bewegingen bij games of sportprogramma’s soepel en blijven details scherp.

WebOS maakt het mogelijk om streamingapps en live‑tv makkelijk te combineren en je kunt de tv bedienen met de meegeleverde Magic Remote. De televisie heeft vier HDMI‑poorten voor randapparatuur en ondersteunt eARC voor lossless audiotransport naar een soundbar of receiver. Door het slanke ontwerp staat de tv op twee subtiele pootjes of kun je hem aan de muur hangen via een VESA‑beugel.

Sony XR‑65A80L

Sony’s XR‑65A80L combineert een 65‑inch OLED‑scherm met het Google TV‑platform. Hierdoor kun je eenvoudig door streamingapps scrollen en de tv koppelen aan je Google‑account. Het XR‑paneel gebruikt Sony’s Cognitive Processor XR, die beelden analyseert en optimaliseert voor contrast en kleur. Met een vernieuwingsfrequentie van 120 Hz en ondersteuning voor HDMI 2.1 zijn snelle games of films geen probleem; variabele refresh rates en Auto Low Latency worden ondersteund.

De luidsprekers zitten achter het scherm verwerkt zodat het geluid direct uit het beeld lijkt te komen; met ondersteuning voor Dolby Atmos sluit je ook eenvoudig een soundbar aan. Vier HDMI‑poorten, wifi en Bluetooth zorgen voor verbinding met randapparatuur, en via de ingebouwde microfoon kun je spraakopdrachten geven. Dankzij de ingebouwde standaard kun je de tv neerzetten of via VESA aan de muur hangen. Het 55-inch model van deze televisie is eerder door ID.nl getest.

▼ Volgende artikel
In een half uur klaar: gourmetstel schoonmaken stap voor stap
© sara_winter - stock.adobe.com
Huis

In een half uur klaar: gourmetstel schoonmaken stap voor stap

Gezellig, zo'n avondje gourmetten. Maar na afloop blijft er op het gourmetstel vaak aangebakken vet, gesmolten kaas en saus achter. Logisch dat je niet meteen zin hebt om de boel schoon te maken. Als je het slim aanpakt, is alles binnen een half uurtje weer schoon!

In dit artikel

Je leest hoe je je gourmetstel stap voor stap schoonmaakt zonder de antiaanbaklaag te beschadigen. We leggen uit wanneer je het beste begint met schoonmaken, hoe je losse onderdelen en het elektrische deel veilig reinigt en welke fouten je beter niet kunt maken. Ook krijg je praktische tips om je tafel tijdens en na het gourmetten schoon te houden, zodat je na afloop snel klaar bent.

Lees ook: Gourmetten zonder stank: 10 ideeën die écht werken

Laten afkoelen, maar wacht niet te lang

Zet het gourmetstel na gebruik uit en trek de stekker uit het stopcontact. Laat het geheel afkoelen tot het handwarm is. Wacht je te lang, dan koeken vet en kaas vast en wordt schoonmaken lastiger. Haal losse onderdelen zoals pannetjes, spatels en bakplaatjes eraf voordat je begint met schoonmaken.

Losse onderdelen schoonmaken

Gourmetpannetjes en bakplaatjes hebben meestal een antiaanbaklaag. Die blijft het mooist als je ze niet hardhandig schoon schrobt. Leg ze in warm water met een beetje afwasmiddel en laat ze tien tot vijftien minuten weken. Aangekoekte resten laten dan vanzelf los. Gebruik daarna een zachte spons of borstel en spoel alles goed af. Controleer altijd even de handleiding: sommige onderdelen kun je in de vaatwasser doen, andere juist niet.

©Saskia van Weert

Zo maak je het elektrische deel veilig schoon

Terwijl de pannetjes, spatels en losse bakplaatjes staan te weken, ga je door met het verwarmingselement. Dat element zelf mag nooit nat worden. Zie je vetspetters of etensresten, veeg die dan weg met keukenpapier zodra het gourmetstel is afgekoeld. Voor hardnekkiger vuil gebruik je een licht vochtige doek met een klein beetje afwasmiddel. Knijp de doek goed uit en zorg dat er geen water bij het snoer of in openingen komt. Droog alles direct na met een schone doek.

De bak- of grillplaat weer vetvrij krijgen

Heeft je gourmetstel een losse bak- of grillplaat, haal dan eerst het overtollige vet weg met keukenpapier. Leg de plaat vervolgens in warm water, zodat aangekoekte resten kunnen losweken. Is de bakplaat vast onderdeel van het gourmetstel, dan kun je deze uiteraard niet in water onderdompelen. Neem in dat geval de plaat af met een licht vochtige doek zodra hij is afgekoeld, eventueel met een beetje afwasmiddel. Zo voorkom je dat vet tijdens het schoonmaken uitsmeert. Gebruik vooral geen schuursponsjes of schrapers om het vet weg te krijgen, want die beschadigen de coating en zorgen ervoor dat eten de volgende keer sneller blijft plakken. 

Watch on YouTube

Veelgemaakte fouten bij het schoonmaken van een gourmetstel

Aangekoekte resten wegkrabben met een mesje of staalwol lijkt misschien slim (want: snel), maar beschadigt de antiaanbaklaag blijvend. Ook bij het elektrische deel gaat het vaak mis. Het verwarmingselement onderdompelen in water is onveilig en kan het gourmetstel onbruikbaar maken. Alles direct in de vaatwasser zetten is ook geen goed idee. Vaatwasprogramma's duren vaak lang en werken op hoge temperaturen. Antiaanbaklagen en dunne metalen onderdelen kunnen daardoor sneller slijten of kromtrekken. Twijfel je, dan is met de hand afwassen altijd de veiligste keuze.

Vergeet je tafel niet!

Vetspetters en gemorste saus zijn bijna niet te voorkomen. Leg daarom vooraf een afwasbaar tafelkleed of gebruik een papieren tafelkleed. Dat kan na het gourmetten rechtstreeks de vuilnisbak in. Houd tijdens het eten keukenpapier of doekjes bij de hand om gemorste resten meteen weg te vegen. Is de tafel toch vies geworden, neem hem dan zo snel mogelijk af met warm water en een mild schoonmaakmiddel.

Schoon wegzetten voor de volgende keer

Laat alle onderdelen volledig drogen voordat je het gourmetstel opbergt. Berg je alles nog vochtig op in de doos of kast, dan kunnen er snel muffe geurtjes ontstaan. Bewaar pannetjes en platen apart van elkaar, eventueel met een vel keukenpapier ertussen. Berg pannetjes en platen apart op, eventueel met een velletje keukenpapier ertussen. Zo voorkom je krassen. Zo is het volgende keer alleen nog maar een kwestie van de boel weer tevoorschijn halen en lekker gaan eten. Veel gourmetplezier!