ID.nl logo
Huis

Hoe Google het web sneller en veiliger maakt met QUIC

Google heeft een netwerkprotocol ontwikkeld om verbindingen tussen browsers en webservers te versnellen: QUIC. Dat doet het protocol onder andere door het onderliggende protocol tcp te vervangen door udp. PCM legt uit hoe dat precies zit.

Het hele web is gebaseerd op http (hypertext transfer protocol), het applicatieprotocol dat afspreekt hoe een browser en webserver met elkaar communiceren. Maar dit is maar één protocol in een hele laag. Onder http werkt traditioneel het transportprotocol tcp (transmission control protocol). Dit is bekend om zijn betrouwbaarheid: het protocol garandeert dat gegevens aankomen. 

Bij het opzetten van een tcp-verbinding gebeurt er al een ‘3-way-handshake’: de zender stuurt een pakket naar de ontvanger, die stuurt een bevestiging terug, en daarna stuurt de zender daarop een bevestiging. En als de zender een pakketje stuurt en geen bevestiging terugkrijgt, stuurt hij het opnieuw.

Al die pakketjes die over en weer gaan, voegen extra vertraging aan elke verbinding toe. Bovendien voegt tls (transport layer security), de opvolger van ssl (secure sockets layer), ook nog eens een uitgebreide handshake toe om sessiesleutels en certificaten uit te wisselen. Zeker als je een versleutelde verbinding opzet, zit je dus talloze pakketjes over en weer te sturen nog voor je maar iets nuttigs kunt doen.

Verschil tcp en udp

Naast tcp is er nog een ander transportprotocol: udp (user datagram protocol). In tegenstelling tot tcp garandeert dat niet dat gegevens daadwerkelijk aankomen. Dit ‘onbetrouwbare’ protocol wordt veel ingezet in toepassingen waar het belangrijker is dat gegevens zo snel mogelijk overgedragen worden en het niet zo erg is dat een deel van de gegevens verloren gaat.

We merken lang niet altijd dat pakketjes verloren gaan

Denk daarbij aan videoconferencing of voip: we merken het waarschijnlijk niet eens als er wat pakketjes verloren gaan. Bij gebruik van tcp zou een verloren pakketje daarentegen opnieuw verstuurd worden en zou het beeld of geluid eventjes haperen door die vertraging.

Als een applicatieprotocol van udp gebruikmaakt en toch wil dat gegevens gegarandeerd aankomen, moet dat protocol zelf een methode daarvoor implementeren. In feite herimplementeert het zo een deel van de functionaliteit van tcp.

Zo werkt QUIC

Wat als je nu op het web tcp inruilt voor udp? Dan zouden de verbindingen al heel wat sneller opgezet worden. En dat is wat Google heeft gedaan: met het protocol QUIC (Quick Udp Internet Connections) neemt het opstarten van een verbinding én het afspreken van tls-parameters samen slechts één of twee pakketjes in. Het resultaat? Je kunt veel sneller een webpagina downloaden.

QUIC draait in de internetprotocolsuite dus boven udp, maar vervangt ook tls. Bovendien vervangt het nieuwe protocol een deel van http/2. Het hele verbindingsbeheer implementeert QUIC immers, en een stuk efficiënter dan het klassieke http. Wat overblijft van http/2 wordt in een http/2-api gestoken, die gebruikmaakt van QUIC.

©PXimport

Waarom udp?

Recentelijk zijn er allerlei inspanningen geleverd om het web te versnellen. In http/2 (zie kader) gebeurt dat bijvoorbeeld met multiplexing: als je een webpagina bezoekt, verlopen alle verbindingen tussen je browser en de webserver over één tcp-verbinding. Dus je browser hoeft niet meer voor elke afbeelding, css-bestand of javascript-bestand een nieuwe tcp-verbinding op te zetten met de bijbehorende vertraging.

Als alles goed gaat, werkt http/2 sneller dan zijn voorganger http/1.1. Maar omdat elk bezoek aan een webserver nu over één tcp-verbinding verloopt, vormt die verbinding een bottleneck. Tcp verwerkt immers alle pakketjes in dezelfde volgorde als ze verzonden zijn. Als de verzending van een pakketje mislukt, verstuurt de zender het pakketje opnieuw.

Udp is een 'onbetrouwbaar' protocol

De ontvanger wacht met het verwerken van de andere pakketjes tot het verloren pakketje arriveert. En hoe meer bestanden je over één tcp-verbinding downloadt, hoe groter de kans dat er ergens wel eens een pakketje verloren raakt en de verbinding dus tijdelijk blokkeert. Kortom: in goede omstandigheden is http/2 sneller dan http/1.1, maar in slechte omstandigheden trager.

Udp heeft dat probleem niet, omdat het een ‘onbetrouwbaar’ protocol is: het garandeert niet dat alle pakketjes aankomen. Als je QUIC boven udp gebruikt, legt een verloren pakketje dus niet de hele verbinding lam, maar heeft het alleen impact op het bestand waartoe het pakketje behoort.

Betrouwbaarheid QUIC

QUIC heeft dus de voordelen van http/2 zonder de bottleneck die tcp bij multiplexing introduceert. Maar geven we door het gebruik van udp nu niet te veel op? Je bent immers niet zeker of je gegevens correct worden overgedragen.

Dat klopt, en daarom implementeert QUIC zelf zijn eigen methode om te garanderen dat gegevens aankomen: forward error correction. Het is te vergelijken met raid5 voor opslag, maar dan voor netwerkpakketjes. Elk verzonden pakketje krijgt dus wat gegevens van andere pakketjes mee. Raakt er een pakketje verloren, dan kan QUIC de inhoud reconstrueren op basis van de andere pakketjes die wel zijn gearriveerd. Zo hoeft het pakketje niet opnieuw verzonden te worden.

De overhead van forward error correction is ongeveer 10 procent. Dat betekent dat QUIC voor elke 10 pakketjes die het verzendt, voldoende informatie meezendt om één verloren pakketje te reconstrueren. Dat lijkt inefficiënt, want je moet 10 procent extra pakketjes verzenden, wat ook extra tijd vraagt. Maar toch is dat nog altijd veel sneller dan verloren pakketjes opnieuw moeten sturen en wachten tot alle pakketjes binnen zijn.

QUIC is versleuteld

Een ander interessant aspect van QUIC is dat de verbinding altijd is versleuteld. QUIC herimplementeert immers de functionaliteit van tls. Zo implementeert het perfect forward secrecy (pfs). Dankzij die eigenschap is je eerdere communicatie nog altijd veilig als er een sessiesleutel uit een QUIC-verbinding wordt gecompromitteerd. Dat wil zeggen: uit een sessiesleutel kun je nooit de voorgaande sleutels afleiden.

QUIC beschermt ook tegen ip-spoofing

QUIC beschermt ook tegen ip spoofing, het vervalsen van het ip-adres van de zender. Daarvoor reikt de server aan de client een ‘source address token’ uit. De server versleutelt het ip-adres van de client en een timestamp van de server en bezorgt de client dat token. De server zendt dat token alleen aan het ip-adres dat in dat token zit. De server gaat ervan uit dat wie het token ontvangt, eigenaar is van het bijbehorende ip-adres. Op elk moment kan de server aan de client vragen om het token te sturen om te bewijzen dat het ip-adres van hem is.

De cryptografie in QUIC is overigens slechts een tussenoplossing. De ontwikkelaars hadden functionaliteit nodig die momenteel niet in tls aanwezig is. Op termijn zal de cryptografie worden vervangen door tls 1.3, waarin de benodigde zaken worden geïmplementeerd.

Goed, zo werkt QUIC dus. Het leuke is dat je er zelf al van kunt profiteren, althans als je de Chrome-browser gebruikt. Lees verder: QUIC inschakelen in Chrome om sneller te browsen. Ook nadelen komen aan bod.

▼ Volgende artikel
Accupaniek: met deze aanpassingen haal je wél het einde van de dag
© Yuliia
Huis

Accupaniek: met deze aanpassingen haal je wél het einde van de dag

Je laptopaccu lijkt altijd leeg te zijn op het moment dat er nergens een stopcontact te bekennen is. Met de juiste software-instellingen pers je echter makkelijk een uur extra uit je apparaat, zonder dat je daarvoor technisch onderlegd hoeft te zijn. Wij leggen uit aan welke knoppen je precies moet draaien voor maximaal resultaat.

Er is weinig irritanter dan een laptop die in de spaarstand schiet of uitvalt terwijl je in de trein net de laatste hand legt aan een belangrijk document. Veel gebruikers denken bij een snel leeglopende batterij direct dat de hardware versleten is en kijken alweer naar een nieuwe laptop. Vaak is de accu zelf echter nog prima in orde, maar gaat het besturingssysteem slordig om met de beschikbare energie. Fabrieksinstellingen zijn namelijk vaak gericht op maximale prestaties en helderheid, niet op uithoudingsvermogen. In dit artikel leer je hoe je de regie terugpakt en de energievreters in toom houdt, zodat je met een gerust hart de dag doorkomt.

Waar die energie eigenlijk naartoe lekt

Om te begrijpen hoe je accucapaciteit bespaart, moet je eerst weten waar de energie aan opgaat. De twee grootste verbruikers in een laptop zijn vrijwel altijd het beeldscherm en de processor. Het scherm vreet stroom om pixels te verlichten; hoe feller het scherm, hoe sneller de teller tikt. Daarnaast speelt de verversingssnelheid een rol. Veel moderne schermen verversen het beeld 120 keer per seconde (120 Hz). Dat kijkt heel rustig, maar kost aanzienlijk meer rekenkracht dan de standaard 60 Hz.

Onder de motorkap is de processor continu bezig met het verwerken van taken. Een veelvoorkomende misvatting is dat je handmatig alle programma's moet afsluiten om stroom te besparen. Dat is maar ten dele waar, want moderne systemen zijn heel goed in het bevriezen van apps die je niet gebruikt. Wat wél energie kost, zijn achtergrondprocessen die actief blijven synchroniseren, zoals cloudopslagdiensten of mailprogramma's die elke minuut checken op nieuwe berichten. Ook randapparatuur die stroom trekt via de usb-poort, zelfs als je deze niet actief gebruikt, snoept procenten van je lading af.

Besparen tijdens eenvoudige taken

De energiebesparende modus is je beste vriend wanneer je taken uitvoert die weinig rekenkracht vereisen. Denk hierbij aan tekstverwerken, e-mailen, webbrowsen of het invullen van spreadsheets. In deze scenario's heb je de volledige kracht van je processor en videokaart simpelweg niet nodig. Door in Windows of macOS te kiezen voor de energiebesparende modus, klokt de processor zichzelf terug. Hij werkt dan letterlijk iets langzamer, maar voor administratieve taken merk je daar in de praktijk niets van. De letters verschijnen nog steeds direct op je scherm zodra je ze typt.

Daarnaast is dit het moment om eens kritisch naar je schermhelderheid te kijken. Binnenshuis is een helderheid van 50 tot 60 procent vaak meer dan voldoende om comfortabel te kunnen werken. Werk je vooral 's avonds? Dan kan het zelfs nog lager. Ook het uitschakelen van toetsenbordverlichting levert in deze context pure winst op. Het zijn kleine percentages per uur, maar op een hele werkdag maakt dit het verschil tussen wel of niet de oplader moeten pakken.

©PXimport

Prestaties boven accuduur

Er zijn momenten waarop je de batterijbesparingsinstellingen beter uit kunt laten, of zelfs agressief moet vermijden. Zodra je aan de slag gaat met zware grafische taken, zoals videobewerking, 3D-rendering of serieuze gaming, werkt een besparingsmodus averechts. De software knijpt de toevoer van stroom naar de componenten af, wat resulteert in een haperend beeld, trage exporttijden en een frustrerende gebruikservaring.

In deze gevallen heeft de hardware ademruimte nodig om te kunnen presteren. Als je probeert te gamen op een besparingsstand, zal het systeem de prestaties van de grafische chip zo ver terugschroeven dat het spel onspeelbaar wordt. Bovendien duurt het renderen van een video in spaarstand veel langer, waardoor het scherm en de schijf langer actief moeten blijven, wat onderaan de streep soms zelfs méér energie kost dan een korte piekbelasting op vol vermogen. Hier geldt: efficiëntie door snelheid is soms zuiniger dan traagheid.

Situaties waarin instellingen het niet meer redden

Hoewel je met software veel kunt optimaliseren, zijn er harde grenzen waarbij geen enkele instelling je meer gaat redden. Je moet realistisch zijn over de fysieke staat van je apparaat.

Ten eerste is er de chemische degradatie. Als de maximale capaciteit van je accu (ook wel battery health geheten) onder de 70 procent is gezakt, kun je instellen wat je wilt, maar de rek is er fysiek uit. De batterijcellen kunnen de lading simpelweg niet meer vasthouden. Ten tweede is oververhitting een doodsteek voor je accuduur. Als de ventilatoren van je laptop continu staan te loeien omdat de koelkanalen vol stof zitten, kost dat enorm veel energie. Warmte is in feite verspilde energie. Tot slot helpt software niet als je zware externe apparaten zonder eigen voeding aansluit. Een externe harde schijf die zijn stroom via de laptop krijgt, trekt de accu leeg alsof het een rietje in een pakje sap is, ongeacht je schermhelderheid.

Creëer je eigen energieprofiel

Om echt grip te krijgen op je verbruik, moet je de instellingen afstemmen op jouw specifieke gedrag. Begin met de slaapstand-instellingen. Veel mensen laten hun laptop openstaan als ze even koffie gaan halen, waarbij het scherm zomaar tien minuten op volle sterkte blijft branden. Stel in dat het scherm al na twee of drie minuten inactiviteit uitgaat. Dat is de makkelijkste winst die je kunt boeken.

Kijk ook naar je randapparatuur. Gebruik je een externe monitor? Zorg dan dat je laptop zo is ingesteld dat het interne scherm volledig uitschakelt, en niet 'zwart maar aan' blijft staan. Gebruik je veel bluetooth-apparaten? Schakel bluetooth uit als je ze niet gebruikt; het constant scannen naar verbindingen kost stroom. Voor gebruikers met een oledscherm is er nog een extra truc: gebruik een donkere modus. Bij oledschermen verbruiken zwarte pixels namelijk helemaal geen energie, in tegenstelling tot traditionele lcd-schermen waar de achtergrondverlichting altijd aan staat.

Balans tussen snelheid en stopcontact

Het verlengen van je accuduur is uiteindelijk een balansspel tussen comfort en noodzaak. De grootste winst behaal je door de schermhelderheid te temperen en de slaapstand agressiever in te stellen, zodat je geen energie verspilt in de pauzes. Wees niet bang om de energiebesparingsmodus standaard aan te zetten voor alledaags werk; de moderne processors zijn krachtig genoeg om dat zonder haperingen op te vangen. Pas als je merkt dat je laptop traag reageert bij zwaardere taken, is het tijd om de teugels weer iets te laten vieren. Zo bepaal jij hoelang de werkdag duurt, en niet je batterij.

▼ Volgende artikel
Super Mario-medley wint een Grammy
Huis

Super Mario-medley wint een Grammy

Een medley gebaseerd op soundtracks uit Super Mario-games van het Jazzorkest 8-Bit Big Band heeft afgelopen zondagnacht een Grammy gewonnen.

De medley ‘Super Mario Praise Break’ won een Grammy Award voor beste arrangement (instrumentaal of a capella). In de medley zijn nummers als Gusty Garden Galaxy uit Super Mario Galaxy en Bomb-Omb Battlefield uit Super Mario 64 te horen.

De 9-Bit Big Band is afkomstig uit New York en heeft al eens eerder een Grammy gewonnen voor gamemuziek. In 2022 won het orkest een Grammy voor het nummer Meta’s Knight’s Revenge uit de SNES-game Kirby Superstar.

View post on X

De Grammy Awards

De Grammy Awards worden al sinds 1959 georganiseerd en worden gezien als een van de belangrijkste prijzen voor muziek ter wereld. Ze worden vaak vergeleken met de Oscars, die worden uitgereikt aan films. Dit jaar won Bad Bunny de prijs van album van het jaar, en ging Billie Eilish er vandoor met een Grammy voor nummer van het jaar. Overigens won Austin Wintory een Grammy in de categorie beste gamesoundtrack voor de soundtrack van Sword of the Sea.

De Super Mario-reeks van Nintendo valt op diverse spelcomputers van het bedrijf te spelen, waaronder de Nintendo Switch 2 en Nintendo Switch. Onder de meest recente grote hoofddelen vallen Super Mario Wonder en Super Mario Odyssey.

Nieuw op ID: het complete plaatje

Misschien valt het je op dat er vanaf nu ook berichten over games, films en series op onze site verschijnen. Dat is een bewuste stap. Wij geloven dat technologie niet stopt bij hardware; het gaat uiteindelijk om wat je ermee beleeft. Daarom combineren we onze expertise in tech nu met het laatste nieuws over entertainment. Dat doen we met de gezichten die mensen kennen van Power Unlimited, dé experts op het gebied van gaming en streaming. Zo helpen we je niet alleen aan de beste tv, smartphone of laptop, maar vertellen we je ook direct wat je erop moet kijken of spelen. Je vindt hier dus voortaan de ideale mix van hardware én content.