ID.nl logo
Wat zijn fractals en hoe zien we ze terug in de IT?
© PXimport
Huis

Wat zijn fractals en hoe zien we ze terug in de IT?

Ooit leken fractals niet meer dan een wiskundige curiositeit met een hoog esthetisch gehalte. Maar door de jaren werden er vele praktische toepassingen gevonden en tegenwoordig kan ook de IT niet meer zonder. Aan de hand van Visions of Chaos nemen we een kijkje in de wondere wereld van fractals en aanverwante zaken, want wat zijn fractals eigenlijk?

In 1904 bedacht de Zweedse wiskundige Helge von Koch een uiterst eenvoudige procedure die als volgt gaat: neem een gelijkzijdige driehoek en gum van elke zijde het middelste derde deel uit. Teken nu boven elk uitgegumd deel twee zijden van een nieuwe gelijkzijdige driehoek. Herhaal deze procedure op alle lijnen die je nu hebt en doe dat steeds opnieuw. Het resultaat is de Koch-sneeuwvlok: een figuur met een eindig oppervlak, maar een oneindige omtrek.

Je kunt de procedure overigens ook loslaten op een enkele lijn en ook daarvan wordt de lengte uiteindelijk oneindig lang. In dat geval spreken we van de Koch-kromme. Hoewel het woord nog niet bestond, was dit een van de eerste fractals.

Een Koch-kromme kun je beschrijven met een wiskundige procedure die L-systeem wordt genoemd (de letter L verwijst naar bedenker Aristid Lindenmayer, een theoretisch bioloog). Een handvol simpele regels vormt hierin het recept om objecten te maken waarvan het uiterlijk verbluffend gevarieerd is en die we dan ook nog vaker zullen tegenkomen. Sommige van deze vormen lenen zich uitstekend voor het maken van de zeer compacte antennes die nodig zijn in mobieltjes en die in staat zijn om met meerdere frequentiebereiken te werken.

Al sinds de oudheid kennen we allerlei soorten symmetrie. Symmetrie speelt dan ook een belangrijke rol in zowel de kunsten als de (natuur)wetenschappen. Symmetrieën die iedereen kent zijn translaties (verschuivingen), rotaties en spiegelingen. Samen kun je daarmee allerlei interessante herhalende patronen maken die je bijvoorbeeld vindt in behang, tapijten en kledingdessins.

Maar de Koch-kromme bevat een geheel nieuw soort symmetrie: zoom je erop in, dan lijkt het detail op het geheel en dat blijft zo, ongeacht hoever je inzoomt.

Dit verschijnsel kennen we ook van kustlijnen, al heeft het daar niet de perfecte regelmaat die de figuur van Koch heeft. Vanaf grote hoogte kun je een kustlijn fotograferen en de lengte berekenen. Kom je dichterbij, dan zie je onregelmatigheden die eerst onzichtbaar waren en die de lengte vergroten. Omdat een kustlijn betekenisloos wordt op het niveau van atomen en moleculen, kun je er eigenlijk geen absolute lengte aan toekennen. Bij perfect gevormde wiskundige figuren kan dat juist wel en zulke figuren met dit type symmetrie noemen we fractals.

Aan de analogie tussen de Koch-sneeuwvlok en kustlijnen zien we dat de natuur zich in een bepaald opzicht soms als fractal lijkt te gedragen.

©PXimport

Chaostheorie

Fractals vormden nauwelijks een onderwerp van studie, omdat ze aanvankelijk geen praktisch nut leken te hebben en met de hand nauwelijks te produceren waren. Met de komst van de computer, met alle grafische mogelijkheden van dien, kwam daar verandering in.

Een tweede gevolg van de computerrevolutie was de ontdekking door de Amerikaanse wiskundige en meteoroloog Edward Lorenz dat betrekkelijk simpele weermodellen, bestaande uit slechts een handvol gekoppelde vergelijkingen, een totaal andere uitkomst kunnen hebben als de startwaarden een heel klein beetje afwijken (het ‘vlindereffect’).

De grafieken die dit fenomeen opleverde, leken verdacht veel op fractals. Daarmee bleken die wonderlijke objecten ineens een direct verband te hebben met de echte wereld en dat zorgde weer voor de geboorte van een geheel nieuwe wetenschap die in de volksmond chaostheorie heet en die neerkomt op de studie van zogeheten niet-lineaire systemen.

Dat je zeer complexe patronen kunt beschrijven door middel van een handvol compacte en simpele regels, roept natuurlijk de vraag op of het omgekeerde ook kan.

De vroegste (lossless) compressie-algoritmen waren gebaseerd op het feit dat elke aaneenschakeling van bits de nodige symmetrie bevat in de vorm van translatie of spiegeling. Heb je een blok met bits gevonden waarvoor dat geldt, dan kun je in elk volgend identiek blok daarnaar verwijzen. Mag er wel sprake zijn van enig verlies, zoals bij foto’s, video’s en audio, dan kan fractale symmetrie ook ineens worden benut. Er zijn dan ook inderdaad compressie-algoritmen die hiervan gebruikmaken. De zoektocht naar goede algoritmen is daarbij werk in uitvoering, omdat compressie langs deze weg vaak tijdrovend is. Een groot voordeel is wel dat je afbeeldingen die met dit soort technieken zijn gecodeerd onbeperkt kunt uitvergroten.

©PXimport

Chaostheorie werd pas bekend bij een breed publiek toen James Gleick in 1987 zijn bestseller Chaos uitbracht. De populariteit van het boek was deels te danken aan de intrigerende schoonheid van de vele Mandelbrot-fractals die erin te bewonderen waren.

Deze bijzondere en fraaie objecten (zie beeld bovenaan dit artikel) zijn het resultaat van een zeer simpele wiskundige procedure, waarbij je het resultaat van een berekening telkens als nieuwe invoer voor diezelfde berekening gebruikt. Zo’n procedure is uiteraard gesneden koek voor de computer die inmiddels overal opdook. Een stortvloed aan programma’s om zelf fractals mee te maken was het gevolg.

Hét programma uit die beginjaren was het gratis Fractint dat in leven wordt gehouden via opvolger WinFract. De gratis alleskunner van nu heet Visions of Chaos (kortweg VoC), dat ook de bron vormde voor de meeste illustraties bij dit artikel. Naast de vele soorten fractals die door de jaren zijn ontwikkeld, stelt VoC je in staat om te experimenteren met allerlei aanverwante complexe systemen.

©PXimport

Game of Life en de Turing Machine

In 1970 bedacht de Britse wiskundige John Conway Game of Life. Op een rooster kunnen vakjes aan of uit staan en aan de hand van een paar simpele regels met betrekking tot het aantal buren dat aan of uit staat, wordt bepaald hoe het rooster in de tijd verandert. Dit bleek een dusdanige rijkdom aan vormen en structuren op te leveren dat er al snel studie werd gemaakt van allerlei vergelijkbare sets met regels, ook in meer dan twee dimensies. Al snel werd duidelijk wat de kracht was van deze zogeheten cellulaire automaten.

De Britse wiskundige Stephen Wolfram (ontwikkelaar van Mathematica) speelde zelfs met een eendimensionale variant. Deze allersimpelste automaat begint met drie vakjes op een rij die aan of uit kunnen staan en 256 mogelijke regels voor de ontwikkeling van volgende generaties. De complexiteit die sommige van deze regels laten zien, leidde tot Wolframs (tamelijk omstreden) idee dat een vergelijkbaar maar uiteraard veel ingewikkelder systeem van regels in veel meer dan één dimensie een vervanging zou kunnen vormen voor de bekende natuurwetten.

©PXimport

De Britse wiskundige Alan Turing, wiens bewogen leven meermaals is verfilmd, speelde al voor de komst van de eerste computers met ideeën die beschreven hoe een geautomatiseerd rekensysteem zou moeten werken. Die gedachten leidden tot het definiëren van de zogeheten Universele Turingmachine (UTM), de wiskundige beschrijving van een theoretische computer die alles kan wat echte computers kunnen.

Van Game of Life werd al snel ontdekt dat het een UTM kan nabootsen en zo werden bijvoorbeeld patronen met roosterpunten gevonden die als programma konden dienen om priemgetallen te genereren en zelfs complexe patronen die zichzelf kunnen kopiëren!

Misschien nog wel verrassender is het feit dat ook sommige regels van de eendimensionale automaat van Wolfram complex genoeg bleken om een UTM te vormen. Dergelijke systemen vormen dan ook een actief studiegebied binnen de theoretische informatica.

Iteratief

Eerder zagen we al dat de Mandelbrot-fractal het resultaat is van een iteratieve procedure en dat geldt ook voor de Koch-kromme en andere L-systemen. Een soortgelijke techniek kun je ook toepassen in meerdere dimensies.

Zo kun je bijvoorbeeld starten met een vierkant van N*N roosterpunten en daarvan het middelpunt bepalen. Dat punt verplaats je vervolgens een willekeurige afstand omhoog of omlaag, waardoor je een (al dan niet omgekeerde) piramide krijgt. Het vierkant is nu ook verdeeld in vier kleinere vierhoeken, waarop je de procedure kunt herhalen. In plaats van het wijzigen van de hoogte kun je beginnen met een vierkant dat bestaat uit zwarte pixels en aan het gevonden middelpunt een willekeurige grijswaarde toekennen.

Het plaatje dat zo na een aantal iteraties ontstaat, heet een plasmafractal en is voor allerlei doeleinden bruikbaar, bijvoorbeeld als hoogtekaart in een 3D-ontwerpprogramma.

In films en games zien we soms de meest adembenemende landschappen. In games zijn die altijd computergegenereerd (al dan niet op basis van echte data) en in films soms ook, bijvoorbeeld wanneer dat goedkoper is of wanneer de actie zich afspeelt in een fantasiewereld. Waar Captain Kirk zijn Star Trek-bemanning in de jaren 60 nog moest laten landen in een decor van rotsblokken gemaakt van piepschuim, kunnen filmmakers van nu hun acteurs via greenscreen-technologie op een planeet neerzetten die helemaal in de computer is ontstaan. Het terrein en de bewolking van die wereld komen tot stand via plasmafractals en aanverwante methoden. Een programma als Terragen geeft een mooi voorbeeld van dergelijke technieken. Het principe is ook in VoC te zien (Fractals, Plasma-Clouds of Fractals, Terrain of Fractals, Planet).

Eerder stelden we al vast dat kustlijnen een fractalachtige structuur hebben en zagen we hoe op basis van fractals complete planeten en wolkenluchten kunnen worden gemaakt. Maar ook de levende natuur zit vol met fractale symmetrie. Kijk je naar het wortelstelsel van een boom of naar het vaatstelsel in het menselijk lichaam, dan is niet meteen duidelijk wat de schaal is. Kijk je naar een ingezoomd plaatje van haarvaten? Of is het een beeld van grotere afstand, waardoor de kleine structuren juist niet meer zichtbaar zijn?

Het systeem dat we zagen bij de Koch-kromme plaatst steeds dezelfde structuren in een verkleinde versie in de ontstane lege ruimtes. Daardoor blijven hoeken tussen lijnen op elk niveau hetzelfde. Voegen we juist – net als bij de plasmafractals – een beetje willekeur toe aan elke stap van de procedure, dan maak je van een overduidelijk geometrisch object een voorwerp dat zo uit Moeder Natuur lijkt te komen.

De fantasiewerelden in games en films zouden wel heel saai zijn zonder vegetatie. Dankzij fractals beschikken we inmiddels gelukkig over een breed scala aan technieken om levensechte bomen en planten te maken. De L-systemen die we al eerder zagen, kunnen worden gebruikt om de basisvorm van een boom of plant te maken. Een andere mogelijkheid vinden we in het gebruik van IFS-fractals (Iterated Function Systems).

Voor het modelleren van dieren in 3D bieden fractals geen oplossing, maar voor de fraaie patronen in de vacht van bepaalde diersoorten zijn sommige cellulaire automaten zeer geschikt (zie VoC Cellular Automata, 2D, Smooth Life).

©PXimport

Kunstig

Behalve dat fractals op allerlei manieren nut hebben bij het creëren van de bouwstenen voor een creatieve productie, vormen ze van meet af aan ook van zichzelf al een rijke bron voor het maken van fraaie beelden of objecten.

Aanvankelijk beperkten de mogelijkheden zich tot stilstaande plaatjes. Fabrikanten van posters vonden inspiratie in de standaard Mandelbrot-fractal, terwijl kunstenaars probeerden om deze op allerlei manieren naar hun hand te zetten. Meer rekenkracht bracht ons de mogelijkheid om filmpjes te maken waarin wordt ingezoomd op de Mandelbrot- en aanverwante fractals. YouTube bevat er inmiddels tienduizenden.

Nog krachtiger pc’s brachten ons 3D-fractals (zie VoC Hypercomplex Fractals, Mandelbulb of het gespecialiseerde Mandelbulber). Op basis van deze en aanverwante fractals produceer je complete 3D-animaties met objecten die niet alleen mooi en interessant zijn, maar die je bovendien met geen mogelijkheid zelf zou kunnen modelleren.

Een logische volgende stap is dat kunstenaars en hobbyisten inmiddels ook 3D-printtechnologie gebruiken om de schoonheid van hun creaties tastbaar te maken.

Brein

Eerder zagen we al dat het vaatstelsel een fractale structuur heeft. Dat geldt tot op zekere hoogte ook voor het brein, waarin stelsels van grote verbindingen bestaan naast telkens kleinere vertakkingen. Het complexe en onvoorspelbare gedrag van onze hersenen valt hieruit ook deels te verklaren.

Iets dergelijks zien we ook terug in grootschalige computernetwerken. In de studie daarvan spelen fractals dan ook een rol. Wanneer dergelijke complexiteit kan optreden bij de handvol simpele vergelijkingen uit de weermodellen van Lorenz, dan zal het niemand verbazen dat iets dergelijks zich zéker voordoet bij de neurale netwerken die gebruikt worden voor kunstmatige intelligentie (AI). Zelfs de best getrainde visuele AI kan een voorwerp waarvan het er al duizenden heeft herkend op zeker moment aanzien voor iets anders, net zoals onze hersenen af en toe de fout in gaan.

Een nieuwe ontwikkeling in de creatie van op fractals gebaseerde kunst is dan ook de combinatie van fractals en van het beeld dat AI daarin ‘meent’ te zien.

Visuele AI kan niet alleen objecten herkennen, maar ook de visuele stijl van een afbeelding veranderen op basis van de stijl van een andere, bijvoorbeeld van een bekend schilderij. Op www.deepdreamgenerator.com kun je daarmee online experimenteren.

Wie over een Nvidia-videokaart beschikt, kan VoC ook uitbreiden met de mogelijkheid om lokaal AI los te laten op fractals of gewoon op eigen afbeeldingen. Het installeren van de benodigde componenten kost al snel een uur, maar is zeer de moeite waard.

©PXimport

Fractals in audio

Ruim 2500 jaar geleden ontdekte de Griekse wiskundige Pythagoras al dat klanken die voor ons aangenaam klinken frequenties hebben die in een eenvoudige rekenkundige verhouding tot elkaar staan. Zo horen we twee verschillende tonen als dezelfde noot wanneer de frequentieverhouding 1:2 is (een octaaf) en geeft een verhouding 2:3 een zuivere kwint; de eerste en laatste noot van elk majeur- of mineurakkoord.

Behalve dat je muziek kunt analyseren aan de hand van de gebruikte toonhoogtes, kun je ook naar de structuur van een muziekstuk kijken. Naast een overkoepelende structuur zoals ABA (bijvoorbeeld couplet, refrein, couplet), zie je dan kleinere structuren. Zo kan het couplet een eigen ABA-structuur hebben van twee identieke regels en een afwijkende in het midden. Zelfs deze regels hebben vaak nog een interne structuur die hetzelfde stramien kan volgen en dat alles doet sterk denken aan een fractal.

Er wordt daarom al jaren geëxperimenteerd met het genereren van aangename muziek op basis van fractals. Naast specialistische software zoals Aural Fractals biedt VoC de mogelijkheid om op basis van sommige soorten fractals midimuziek op te slaan.

Conclusie

Het gebruik van fractals voor allerlei toepassingen in de IT heeft inmiddels een grote vlucht genomen en voortdurend worden er nieuwe technieken mee ontwikkeld. Daarnaast hebben ze hun nut bewezen binnen allerlei vakgebieden, variërend van biologie en geneeskunde tot geologie en economie. 

Los daarvan zijn fractals vaak objecten met een grote visuele schoonheid en met een variatie waarover je je eindeloos kunt verbazen. Dus zelfs wie niet geïnteresseerd is in de achterliggende wetenschap, kan er toch volop van genieten.

▼ Volgende artikel
6 handige tips voor het gebruik van je staafmixer
© luismolinero
Huis

6 handige tips voor het gebruik van je staafmixer

Als je alles uit je staafmixer wilt halen, moet je wel weten hoe je ermee om moet gaan. Met deze tips krijg je niet alleen de beste (lees: lekkerste) resultaten, maar gaat je staafmixer ook langer mee. Win-win! 

In het kort: Een staafmixer is in principe een heel simpel apparaat. Je zet hem aan en hij pureert de boel voor je. Maar let op: een staafmixer kan overbelast raken en sneller stukgaan als je hem niet op de juiste manier gebruikt. Ook kunnen je gerechten er minder lekker op worden. Wil je weten hoe je je staafmixer optimaal benut? Lees dan de tips in dit artikel.

Lees ook: Dit kun je allemaal (nog meer) met een staafmixer

Tip 1: Ingrediënten voorsnijden

Hoewel staafmixers erg krachtig kunnen zijn, hebben ze ook relatief kleine mesjes. In tegenstelling tot bijvoorbeeld een blender kan het voor een staafmixer daarom lastig zijn om grote stukken goed en gelijkmatig te verpulveren. Je kunt je staafmixer dus een handje helpen door je ingrediënten van tevoren in kleinere stukken te snijden. Hiermee verklein je de kans op klonten of stukjes in je soep of saus én raken de messen minder snel overbelast. 

Tip 2: Let op het vermogen

Het is altijd belangrijk om rekening te houden met het vermogen van je staafmixer, want dat bepaalt welke ingrediënten het apparaat kan pureren. Het pureren van harde ingrediënten zoals noten of ongekookte groenten met een staafmixer met een laag vermogen gaat hoogstwaarschijnlijk niet lukken. Of het lukt wel, maar met een overbelaste motor tot gevolg. Voor harde ingrediënten is vaak een vermogen van minstens 600 watt nodig. Wil je vaak en veel gaan pureren, kies dan voor een vermogen van minstens 1000 watt. Maar let ook op het toerental, oftewel het aantal rotaties per minuut (RPM). Een staafmixer kan namelijk een laag vermogen hebben, maar wél een toerental van minstens 10.000 RPM. Dan is hij alsnog krachtig genoeg om harde ingrediënten te pureren. 

©Khaletski Siarhei | goffkein.pro

Tip 3: Niet te lang pureren

Lang achter elkaar pureren is funest voor de messen en de motor van een staafmixer. Beter is om in pulsen te pureren, waarbij je de motor tussen het pureren door steeds een paar seconden laat rusten. Vooral bij dikkere mengsels, zoals notenpasta, smoothies en dikke soepen, is dit belangrijk. Het is afhankelijk van het vermogen van een staafmixer hoe lang hij achter elkaar kan pureren. Vaak staat dit aangegeven bij de specificaties. Heb je geen idee? Pureer zachte ingrediënten dan niet langer dan 1,5 minuut en harde ingrediënten niet langer dan 45 seconden. Maakt je staafmixer een raar geluid of wordt hij erg warm, stop dan meteen met pureren. Dit zijn signalen dat het apparaat overbelast is. 

Tip 4: De juiste snelheid

De meeste staafmixers hebben meerdere snelheidsstanden en dat is niet zonder reden. Zo heb je voor het fijn pureren van dikkere mengsels en harde ingrediënten vaak een hogere snelheid nodig dan voor lichte bereidingen. En de turbostand kan handig zijn om harde ingrediënten kort maar krachtig te verpulveren of om een extra gladde soep te maken. Soms wil je een combi van snelheden gebruiken. Je begint bijvoorbeeld met een lage snelheid om spatten in de keuken te voorkomen en bouwt vervolgens geleidelijk op naar een hogere snelheid voor een glad resultaat. 

Tip 5: Ronddraaiende beweging

Beweeg je je staafmixer tijdens het pureren altijd gewoon op en neer? Op zich niks mis mee, want pureren doet het apparaat toch wel. Maar wil je zeker weten dat je geen plekken overslaat, maak dan tijdens het op en neer gaan óók een cirkelvormige beweging. Want op een mayonaise met klontjes zit natuurlijk niemand te wachten. 

©VI Studio

Tip 6: Schoonmaken

Een staafmixer neemt je veel werk uit handen, maar daar moet je wel iets voor terugdoen. Een staafmixer die niet goed schoongemaakt wordt, zal sneller vastlopen door aangekoekte etensresten. De motor moet dan tijdens het pureren harder werken en zal waarschijnlijk sneller overbelast raken. Daarnaast is een vieze staafmixer natuurlijk niet zo hygiënisch. Wil je geen bacteriën en nare geurtjes in je verse soep, maak je staafmixer dan na elk gebruik goed schoon. Dat kost je nauwelijks moeite: laat het apparaat even draaien in een maatbeker met warm water en wat afwasmiddel of doe hem, als dat kan, in de vaatwasser.

Nog meer doen met je staafmixer?

De beste accessoires, van gardes tot hakmolens

▼ Volgende artikel
Sony in 2025: nieuwe soundbars en tv's, maar minder vaak updates
Huis

Sony in 2025: nieuwe soundbars en tv's, maar minder vaak updates

Tijdens het persevent van Sony op het Europese hoofdkwartier in Weybrigde in het Verenigd Koninkrijk werden de nieuwe soundbars en tv's van 2025 aangekondigd. Het bedrijf zegt het misschien niet met zoveel woorden, maar de boodschap is duidelijk: minder frequente updates van alle modellen, en miniled blijft de technologie voor het topmodel.

 De 2023 A95L qd-oled-tv heeft twee jaar in het aanbod gestaan, ondanks het feit dat er vorig jaar wel degelijk een nieuw paneel beschikbaar was. In 2025 krijgt het model wel een update. De Bravia 8 II - te lezen als Bravia 8 Mark 2 - zal uitgerust zijn met het nieuwste (3e generatie) qd-oled-paneel van Samsung Display. Sony claimt dat dit paneel een 25% hogere piekhelderheid zal leveren ten opzichte van de A95L. Als we kijken naar wat Samsung Display (de panelfabrikant) claimde op CES, dan kan dit paneel tot 4.000 nits piekhelderheid leveren. We vermoeden dat Sony daar onder zal blijven, het merk is over het algemeen wat voorzichtiger en pusht zijn oled-panelen niet tot het uiterste op het gebied van piekhelderheid. Opmerkelijk genoeg vermeldde Sony expliciet dat de Bravia 8 II goedkoper zal zijn dan de A95L, maar concrete prijzen zijn er nog niet. De Bravia 8 II zal beschikbaar zijn in 55 en 65 inch.

©Eric Beeckmans | ID.nl

De Bravia 5 en Bravia 3

Verder naar onder in de line-up worden de Bravia 5 en Bravia 3 aangekondigd, ze vervangen respectievelijk de X90L en de X75WL. De Bravia 5 wordt uitgerust met de XR-processor (ook te vinden op de hogere modellen) en een XR Backlight Master Drive, een miniled-achtergrondverlichting die zes keer meer zones zal gebruiken dan de X90L. Hij zal beschikbaar zijn in 55, 65, 75,85, en 98 inch. De Bravia 3 is een instap 4K-model met direct led-achtergrondverlichting en de X1-processor. Dit model zal beschikbaar zijn in 43, 50, 55, 65, 75, en 85 inch. Beide modellen ondersteunen Dolby Vision en Dolby Atmos.

Demo's van nieuwe modellen

Sony toonde een aantal demonstraties van de nieuwe modellen, in vergelijking met een aantal concurrenten (dat waren uiteraard 2024-modellen). De Bravia 8 II stond opgesteld naast de voorganger de A95L, een Sony referentie studiomonitor, en een LG G4 en Samsung S95D. Zowel in Vivid Mode als de Filmmaker Mode (of vergelijkbaar want Sony gebruikt geen Filmmaker Mode) liet de Bravia 8 II een sterke indruk na. Zijn beelden leunen erg dicht tegen de studioreferentie aan. Kleuren in zeer heldere accenten zijn beter, en donkere gradaties worden nauwkeuriger weergegeven.

De Bravia 5 stond opgesteld naast een X85L (wat overigens een ietwat vreemde vergelijking is, want het toestel vervangt de X90L) en een Samsung QN85D. De XR Backlight Master Drive geeft de Sony flink wat extra helderheid en een duidelijke verbetering in contrast. Sony toonde ook een nieuwe techniek voor ruisonderdrukking bij oude bronnen (SD-content zoals Friends). Dat presteerde in sommige gevallen goed, maar liet in andere gevallen meer ruis zien. Mogelijk verfijnt Sony dit nog voordat het model op de markt komt. Het feit dat de testen in Vivid beeldmode gedaan werden, maakt de vergelijking ook moeilijk, vermits fabrikanten daar vaak veel vrijheid nemen.

Audioverwerking, beeldverwerking en Studio Calibrated

Op het gebied van beeldverwerking liet Sony dit keer geen belangrijke nieuwigheden zien. Ons oordeel over het nieuwe ruisonderdrukkingsalgoritme dat tijdens de Bravia 5 demo getoond werd, laten we nog even achterwege totdat we het zelf kunnen testen. De Bravia 3 heeft een nieuw algoritme voor beeldkwaliteit, maar dat werd alleen in Vivid-mode getoond en dat is een test waaruit weinig op te maken valt.  

©Eric Beeckmans | ID.nl

Sony benadrukte verder nog de aanwezigheid van Voice Zoom 3 op de Bravia 8 II en Bravia 5. Daarmee kan de processor nauwkeurig stem of dialogen isoleren van de rest van de audio. Zo kun je die selectief versterken (voor film kijken ’s avonds) of verzwakken (om de commentator bij sport wat stiller te maken).

De tagline van Sony, ‘Cinema is coming home', wil de fabrikant garanderen met een aantal Studio Calibrated beeldmodes: Netflix Adaptive Calibrated Mode, Prime Video Calibrated Mode en Sony Pictures Core Calibrated Mode. Die modi zijn specifiek in samenwerking met de respectievelijke streamingdienst opgezet. Voor alle andere content is er de ‘Professional’-beeldmode.

Tweejaarlijkse cyclus en miniled als toptechnologie

Net als vorig jaar heeft Sony alleen een deel van line-up vernieuwd. Dat is een aanpak die we toejuichen, want het maakt de verbeteringen die een nieuw model krijgt veel duidelijker. Sony kan daar eventueel nog wel van afwijken, bijvoorbeeld als een model het slecht doet in de markt. Maar we hopen dat dit voorbeeld navolging krijgt.

De 2024 Bravia 9 - een miniled-model - geldt nog steeds als het topmodel, ondanks de vernieuwde Bravia 8 II QD-OLED. Sterker nog, Sony kondigde voor volgend jaar een RGB-miniled technologie aan die duidelijk voorbestemd is om het nieuwe topmodel te worden.

Wat is een rgb-miniled achtergrondverlichting?

De achtergrondverlichting is het onderdeel van een lcd-tv dat licht produceert. Dat kunnen witte leds zijn, maar een moderne premium lcd-tv gebruikt doorgaans talloze minileds die blauw licht produceren, dat via een quantum dot-folie wordt omgezet naar wit licht. De leds worden onderverdeeld in zones die de processor individueel kan aansturen om het contrast te verbeteren. In donkere zones dimt hij het licht, in heldere zones kan hij de leds sterker aansturen. Om kleur te produceren wordt elke pixel met behulp van een kleurfilter opgedeeld in een rode, groene en blauwe subpixel.

©Sony

RGB-miniled technologie vervangt dit systeem door trio's van rode, groene en blauwe minileds te gebruiken die samen wit licht creëren, waardoor de quantum dot-laag overbodig wordt. Omdat er nog steeds veel minder leds dan pixels zijn, blijft het kleurenfilter nodig om per pixel de juiste kleuren te creëren. Net zoals bij een huidige miniled-tv worden de leds onderverdeeld in zones om het contrast te verbeteren.

©Sony

Maar deze technologie kan nog een stapje verder gaan. Als de processor detecteert dat er in een bepaalde zone enkel groen licht nodig, dan kan hij de rode en blauwe leds uitschakelen. Dat is alvast veel efficiënter dan het overbodige licht weg te filteren.

Wachten tot 2026 voor nog rijkere, helderdere kleuren

Sony claimt dat dit soort achtergrondverlichting een piekhelderheid van 4.000 nits en kleurbereik van 99 % P3 kan bereiken en 90% Rec.2020. Dat is een flinke upgrade ten opzichte van de beste tv’s die momenteel wel 4000 nits halen, maar eerder 95% P3 en 75% Rec.2020 leveren. Concreet kan een rgb-miniled veel helderdere kleuren tonen, die toch erg intens zijn.

©Sony

Daarnaast zijn ook meer nauwkeurige kleurgradaties mogelijk, en dat zowel in heel donkere als heel heldere tinten. Een aangezien meer en meer filmmakers vaak erg donkere scènes gebruiken, zou dat een welkome verbetering zijn. De technologie heeft nog twee extra voordelen. Ze is schaalbaar naar grote tv-maten. En een rgb-miniled tv zou ook een betere kijkhoek hebben, al liet Sony niet weten hoe dat gerealiseerd wordt. Sony zal een eerste model vermoedelijk in 2026 lanceren.

Ook bij audio een beperkt aantal nieuwe modellen

Net als bij de televisies worden ook de audioproducten niet meer elk jaar vernieuwd zo blijkt. Vorig jaar kreeg de top van het aanbod een make-over, dit jaar is de onderste helft aan de beurt. De Bravia Theatre Bar 6 is een 3.1.2 soundbar met subwoofer. De Bravia Theatre System 6 is een 5.1 soundbar met bijgeleverde surroundluidsprekers en subwoofer. Beide ondersteunen Dolby Atmos, DTS:X, Voice Zoom 3. We kregen een korte demo van de vernieuwde Bravia Bar 6, die een duidelijk vollere en stevigere klank produceerde dan de voorganger.

©Eric Beeckmans | ID.nl

Daarnaast zijn er ook twee optionele accessoires. De Bravia Theatre Rear 8 bestaat uit één paar draadloze surroundluidsprekers die je kunt gebruiken om de Bar 6 uit te breiden. De Bravia Theatre Sub 7 is een compacte draadloze subwoofer van 100W.

Bekijk andere Sony-tv's op Kieskeurig.nl: